phone +7 (3412) 91 60 92

Archive of Issues


Russia Moscow; Orel
Year
2021
Volume
31
Issue
1
Pages
3-18
>>
Section Mathematics
Title On the convergence of the barycentric method in solving internal Dirichlet and Neumann problems in $\mathbb{R}^2$ for the Helmholtz equation
Author(-s) Il’inskii A.S.a, Polyanskii I.S.b, Stepanov D.E.b
Affiliations Lomonosov Moscow State Universitya, The Academy of Federal Security Guard Service of the Russian Federationb
Abstract The application of the barycentric method for the numerical solution of Dirichlet and Neumann problems for the Helmholtz equation in the bounded simply connected domain $\Omega\subset\mathbb{R}^2$ is considered. The main assumption in the solution is to set the $\Omega$ boundary in a piecewise linear representation. A distinctive feature of the barycentric method is the order of formation of a global system of vector basis functions for $\Omega$ via barycentric coordinates. The existence and uniqueness of the solution of Dirichlet and Neumann problems for the Helmholtz equation by the barycentric method are established and the convergence rate estimate is determined. The features of the algorithmic implementation of the method are clarified.
Keywords internal Dirichlet and Neumann problems, Helmholtz equation, arbitrary polygon, barycentric method, Galerkin method, barycentric coordinates, convergence estimation
UDC 519.632
MSC 35J05, 65N12
DOI 10.35634/vm210101
Received 24 June 2020
Language Russian
Citation Il’inskii A.S., Polyanskii I.S., Stepanov D.E. On the convergence of the barycentric method in solving internal Dirichlet and Neumann problems in $\mathbb{R}^2$ for the Helmholtz equation, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2021, vol. 31, issue 1, pp. 3-18.
References
  1. Arkhipov N.S., Polyanskij I.S., Stepanov D.E. The barycentric method for the field analysis in a regular waveguide with arbitrary cross-section, Antenny, 2015, no. 1 (212), pp. 32-40 (in Russian). https://www.elibrary.ru/item.asp?id=23340113
  2. Polyanskii I.S. Vector barycentric method in computational electrodynamics, SPIIRAS Proceedings, 2017, issue 2 (51), pp. 206-222 (in Russian). https://doi.org/10.15622/sp.51.9
  3. Polyanskii I.S. Baritsentricheskii metod v vychislitel'noi elektrodinamike (Barycentric method in computational electrodynamics), Orel: Russian Federation Security Guard Service Federal Academy, 2017.
  4. Polyanskii I.S. About application the barycentric method in the numerical solution of internal problem of electrodynamics, Fizika Volnovykh Protsessov i Radiotekhnicheskie Sistemy, 2018, vol. 21, no. 3, pp. 36-42 (in Russian). https://www.elibrary.ru/item.asp?id=35787655
  5. Wachspress E.L. A rational finite element basis, New York: Academic Press, 1975.
  6. Den Ch., Chang Q., Hormann K. Iterative coordinates, Computer Aided Geometric Design, 2020, vol. 79, 101861. https://doi.org/10.1016/j.cagd.2020.101861
  7. Floater M.S. Mean value coordinates, Computer Aided Geometric Design, 2003, vol. 20, issue 1, pp. 19-27. https://doi.org/10.1016/S0167-8396(03)00002-5
  8. Li X.-Y., Hu Sh.-M. Poisson coordinates, IEEE Transactions on Visualization and Computer Graphics, 2013, vol. 19, issue 2, pp. 344-352. https://doi.org/10.1109/TVCG.2012.109
  9. Belyaev A.G., Fayolle P.-A. Transfinite barycentric coordinates, Generalized barycentric coordinates in computer graphics and computational mechanics, Boca Raton: CRC Press, 2017, pp. 43-62. https://doi.org/10.1201/9781315153452-3
  10. Polyanskii I.S. Barycentric coordinates for the multidimensional Poisson approximation of the scalar potential inside an arbitrary region, part 1, Vestnik Saratovskogo Gosudarstvennogo Tekhnicheskogo Universiteta, 2015, vol. 78, no. 1, pp. 30-36 (in Russian). https://www.elibrary.ru/item.asp?id=23640471
  11. Polyanskii I.S. Barycentric coordinates for the multidimensional Poisson approximation of the scalar potential inside an arbitrary region, part 2, Vestnik Saratovskogo Gosudarstvennogo Tekhnicheskogo Universiteta, 2015, vol. 78, no. 1, pp. 36-42 (in Russian). https://www.elibrary.ru/item.asp?id=23640472
  12. Polyanskii I.S. Barycentric coordinates of Poisson-Riemann, SPIIRAS Proceedings, 2016, issue 6 (49), pp. 32-48 (in Russian). https://doi.org/10.15622/sp.49.2
  13. Il'inskii A.S., Polyanskii I.S. An approximate method for determining the harmonic barycentric coordinates for arbitrary polygons, Computational Mathematics and Mathematical Physics, 2019, vol. 59, no. 3, pp. 366-383. https://doi.org/10.1134/S0965542519030096
  14. Nedelec J.C. Mixed finite elements in $R$$3$ , Numerische Mathematik, 1980, vol. 35, pp. 315-341. https://doi.org/10.1007/BF01396415
  15. Karchevskii M.M., Pavlova M.F. Uravneniya matematicheskoi fiziki. Dopolnitel'nye glavy (Equations of mathematical physics. Additional chapters), Saint-Petersburg: Lan', 2016.
  16. Kantorovich L.V., Krylov V.I. Priblizhennye metody vysshego analiza (Approximate methods of higher analysis), Moscow: Gostekhizdat, 1950.
  17. Ilinsky A.S., Smirnov Yu.G. Electromagnetic wave diffraction by conducting screens, De Gruyter, 1998. https://doi.org/10.1515/9783112314128
  18. Fletcher C.A.J. Computational Galerkin methods, Springer, 1984.
  19. Romanovskii P.I. Ryady Fur'e. Teoriya polya. Analiticheskie i spetsial'nye funktsii. Preobrazovanie Laplasa (Fourier Series. Field theory. Analytical and special functions. Laplace transform), Moscow: Nauka, 1980.
  20. Kostrikin A.I., Manin Yu.I. Lineinaya algebra i geometriya (Linear algebra and geometry), Moscow: Nauka, 1986.
  21. Mikhlin S.G. Pogreshnosti vychislitel'nykh protsessov (Errors of computational processes), Tbilisi: Tbilisi University, 1983.
  22. Nicolaides R.A. On a class of finite elements generated by Lagrange interpolation, SIAM Journal on Numerical Analysis, 1972, vol. 9, issue 3, pp. 435-445. https://doi.org/10.1137/0709039
  23. Berezin I.S., Zhidkov N.P. Metody vychislenii. Tom 1 (Methods of computation. Vol. 1), Moscow: GIFML, 1962.
  24. Grigor'ev M.I., Malozemov V.N., Sergeev A.N. Bernstein polynomials and composite Bézier curves, Computational Mathematics and Mathematical Physics, 2006, vol. 46, no. 11, pp. 1872-1881. https://doi.org/10.1134/S0965542506110042
  25. Daugavet I.K. Teoriya priblizhennykh metodov. Lineinye uravneniya (The theory of approximate methods. Linear equations), Saint-Petersburg: BHV-Petersburg, 2006.
  26. Triebel H. Interpolation theory. Function spaces. Differential operators, Berlin: Veb Deutscher Verlag Der Wissenschaften, 1978.
  27. Medvedik M.Yu., Smirnov Yu.G. Ellipticity of the electric field integral equation for absorbing media and the convergence of the Rao-Wilton-Glisson method, Computational Mathematics and Mathematical Physics, 2014, vol. 54, no. 1, pp. 114-122. https://doi.org/10.1134/S0965542514010096
  28. Smirnov Yu.G. Convergence of the Galerkin methods for equations with elliptic operators on subspaces and solving the electric field equation, Computational Mathematics and Mathematical Physics, 2007, vol. 47, no. 1, pp. 126-135. https://doi.org/10.1134/S0965542507010137
  29. Krasnosel'skii M.A., Vainikko G.M., Zabreiko P.P., Rutitskii Ya.B., Stetsenko V.Ya. Priblizhennoe reshenie operatornykh uravnenii (Approximate solution of operator equations), Moscow: Nauka, 1969.
  30. Cormen T.H., Leiserson Ch.E., Rivest R.L., Stein C. Introduction to Algorithms, McGraw-Hill, 2005.
  31. Arkhipov N.S., Polyanskii I.S., Stepanov D.E. Representation of reflecting surfaces of the antenna system in the tasks of analysis and synthesis of reflector antennas by the methods of physical optics, Telekommunikatsii, 2014, no. 7, pp. 15-21 (in Russian). https://elibrary.ru/item.asp?id=21717197
  32. Vasilevskii Yu.V., Danilov A.A., Lipnikov K.N., Chugunov V.N. Avtomatizirovannye tekhnologii postroeniya nestrukturirovannykh raschetnykh setok (Automated technologies for constructing unstructured computational grids), Moscow: Fizmatlit, 2016.
  33. Taylor M.A., Wingate B.A., Bos L.P. Several new quadrature formulas for polynomial integration in the triangle, Report-no: SAND2005-0034J.
Full text
Next article >>