phone +7 (3412) 91 60 92

Archive of Issues

Russia Saratov
Section Mathematics
Title Steady solitary wave solutions of the generalized sixth-order Boussinesq-Ostrovsky equation
Author(-s) Zemlyanukhin A.I.a, Bochkarev A.V.a
Affiliations Saratov State Technical Universitya
Abstract An overview of models that lead to the nonintegrable Ostrovsky equation and its generalizations having no exact solitary-wave solutions is given. A brief derivation of the Ostrovsky equation for longitudinal waves in a geometrically nonlinear rod lying on an elastic foundation is performed. It is shown that in the case of axially symmetric propagation of longitudinal waves in a physically nonlinear cylindrical shell interacting with a nonlinear elastic medium the displacement component obeys the generalized sixth-order Boussinesq-Ostrovsky equation. We construct an exact kink-like solution of this equation, establish a connection with the generalized nonlinear Schrödinger (GNLS) equation and find the steady travelling wave solution of the GNLS in the form of simple soliton with monotonic or oscillating tails.
Keywords nonlinear evolution equations, solitary-wave solutions, generalized nonlinear Schrödinger equation
UDC 517.95
MSC 34A05, 35C08, 35Q55, 74J35
DOI 10.20537/vm150304
Received 1 July 2015
Language English
Citation Zemlyanukhin A.I., Bochkarev A.V. Steady solitary wave solutions of the generalized sixth-order Boussinesq-Ostrovsky equation, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2015, vol. 25, issue 3, pp. 338-347.
  1. Ostrovsky L.A. Nonlinear internal waves in a rotating ocean, Oceanology, 1978, vol. 18, no. 2, pp. 119-125.
  2. Ostrovsky L.A., Stepanyants Yu.A. Nonlinear waves in a rotating fluid, Nelineinye volny: fizika i astrofizika (Nonlinear Waves: Physics and Astrophysics), Moscow: Nauka, 1993, pp. 132-153 (in Russian).
  3. Vakhnenko V.O., Parkes E.J. The two loop soliton solution of the Vakhnenko equation, Nonlinearity, 1998, vol. 11, no. 6, pp. 1457-1464.
  4. Kudryashov N.A. Metody nelineinoi matematicheskoi fiziki (Methods of nonlinear mathematical physics), Dolgoprudnyi: Izd. Dom. Intellekt, 2010, 368 p.
  5. Kosevich A.M., Kovalev, A.S. The supersonic motion of a crowdion. The one-dimensional model with nonlinear interaction between the nearest neighbours, Solid State Communication, 1973, vol. 12, issue 8, pp. 763-765.
  6. Konno K., Kameyama W., Sanuki H. Effect of weak dislocation potential on nonlinear wave propagation in anharmonic crystal, J. Phys. Soc. Japan, 1974, vol. 37, no. 1, pp. 171-176.
  7. Sazonov S.V. Optical solitons in two-level atoms media, Nauch.-Tekhn. Vestn. Inform. Tekhn., Mekh. i Optiki, 2013, vol. 87, no. 5, pp. 1-22 (in Russian)
  8. Gendel'man O.V., Manevitch L.I. Exact soliton-like solutions in generalized dynamic models of quasi-one-dimensional crystal, Journal of Experimental and Theoretical Physics, 1997, vol. 85, no. 4, pp. 824-826.
  9. Khusnutdinova K.R., Samsonov A.M., Zakharov A.S. Nonlinear long-wave models for imperfectly bonded layered waveguides, Theoretical and Mathematical Physics, 2009, vol. 159, no. 3, pp. 819-832.
  10. Dreiden G.V., Samsonov A.M., Semenova I.V., Khusnutdinova K.R. Observation of a radiating bulk strain soliton in a solid-state waveguide, Technical Physics, 2011, vol. 56, no. 6, pp. 889-892.
  11. Khusnutdinova K.R., Moore K.R. Initial-value problem for coupled Boussinesq equations and a hierarchy of Ostrovsky equations, Wave Motion, 2011, vol. 48, no. 8, pp. 738-752.
  12. Alias A., Grimshaw R.H.J., Khusnutdinova K.R. Coupled Ostrovsky equations for internal waves in a shear flow, Physics of Fluids, 2014, vol. 26, 126603.
  13. Grimshaw R., Chuncheng G., Helfrich K., Vlasenko V. Combined effect of rotation and topography on shoaling oceanic internal solitary waves, J. Physical Oceanography, 2014, vol. 44, pp. 1116-1132.
  14. Zemlyanukhin A.I., Kovalev A.V. Numerical study of the fifth-order Gardner-Ostrovsky equation, Vest. Nats. Issl. Yadern. Univ. “MIFI”, 2014, vol. 3, no. 3, pp. 311-315 (in Russian).
  15. Erofeev V.I., Kazhaev V.V., Semerikova N.P. Volny v sterzhnyakh. Dispersiya. Dissipatsiya. Nelineinost' (Waves in rods. Dispersion. Dissipation. Nonlinearity), Moscow: Fizmatlit, 2002, 208 p.
  16. Zemlyanukhin A.I., Mogilevich L.I. Nonlinear waves in inhomogeneous cylindrical shells: a new evolution equation, Acoustical Physics, 2001, vol. 47, no. 3, pp. 303-307.
  17. Zemlyanukhin A.I. Exact soliton-like solution of the fifth-order nonlinear evolution equation, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelin. Dinam., 1999, vol. 7, no. 2-3, pp. 29-31 (in Russian).
  18. Grimshaw R., Malomed B., Benilov E. Solitary waves with damped oscillatory tails: an analysis of the fifth-order Korteweg-de Vries equation, Physica D, 1994, vol. 77, no. 4, pp. 473-485.
  19. Obregon M.A., Stepanyants Yu.A. Oblique magneto-acoustic solitons in a rotating plasma, Physics Letters A, 1998, vol. 249, issue 4, pp. 315-323.
  20. Kawahara T. Oscillatory solitary wave in dispersive media, J. Phys. Soc. Japan, 1972, vol. 33, issue 1, pp. 260-264.
Full text
<< Previous article
Next article >>