phone +7 (3412) 91 60 92

Archive of Issues

Russia Izhevsk
Section Mathematics
Title Uniform complete controllability and global control over asymptotic invariants of linear systems in the Hessenberg form
Author(-s) Zaitsev V.A.a
Affiliations Udmurt State Universitya
Abstract We prove that a linear control system $$ \dot x=A(t)x+B(t)u, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n, \quad u\in\mathbb{R}^m, \qquad\qquad(1) $$ with matrix coefficients of the Hessenberg form is uniformly completely controllable in the sense of Kalman under rather weak conditions imposed on coefficients. It is shown that some obtained sufficient conditions are essential. Corollaries are derived for quasi-differential equations. We construct feedback control $u=Ux$ for the system $(1)$ and study the problem of global control over asymptotic invariants of the closed-loop system $$ \dot x=(A(t)+B(t)U)x, \quad t\in\mathbb{R}, \quad x\in\mathbb{R}^n.\qquad\qquad \qquad \qquad(2) $$ The conditions on coefficients are weakened in the known results of S.N. Popova. For the system $(2)$ with matrix coefficients of the Hessenberg form, the obtained results and the results of S.N. Popova are used to receive sufficient conditions for global reducibility to systems of scalar type and for global control over Lyapunov exponents and moreover, for global Lyapunov reducibility in the case of periodic $A(\cdot)$ and $B(\cdot)$.
Keywords linear control system, uniform complete controllability, system in the Hessenberg form, global control over asymptotic invariants
UDC 517.977.1, 517.926
MSC 93B05, 93C05
DOI 10.20537/vm150303
Received 15 May 2015
Language Russian
Citation Zaitsev V.A. Uniform complete controllability and global control over asymptotic invariants of linear systems in the Hessenberg form, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2015, vol. 25, issue 3, pp. 318-337.
  1. Filippov A.F. Differential equations with discontinuous righthand sides, Dordrecht: Kluwer Academic Publishers, 1988.
  2. Bylov B.F., Vinograd R.E., Grobman D.M., Nemytskii V.V. Teoriya pokazatelei Lyapunova i ee prilozheniya k voprosam ustoichivosti (Theory of Lyapunov exponents and its application to problems of stability), Moscow: Nauka, 1966, 576 p.
  3. Kalman R.E. Contribution to the theory of optimal control, Boletin de la Sociedad Matematiсa Mexicana, 1960, vol. 5, no. 1, pp. 102-119.
  4. Tonkov E.L. A criterion for uniform controllability and stabilization of a linear recurrent system, Differ. Uravn., 1979, vol. 15, no. 10, pp. 1804-1813 (in Russian).
  5. Tonkov E.L. On the theory of linear control systems, Dr. Sci. (Phys.-Math.) Dissertation, Sverdlovsk, 1983, 267 p. (In Russian).
  6. Zaitsev V.A. Criteria for uniform complete controllability of a linear system, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2015, vol. 25, no. 2, pp. 157-179 (in Russian).
  7. Zaitsev V.A. Uniform complete controllability and Lyapunov reducibility of a two-dimensional quasi-differential equation, Vestn. Udmurt. Univ. Mat., 2007, no. 1, pp. 55-66 (in Russian).
  8. Zaitsev V.A. Quasidifferential equation controllability, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2009, no. 1, pp. 90-100 (in Russian).
  9. Tonkov E.L. Uniform attainability and Lyapunov reducibility of bilinear control system, Proceedings of the Steklov Institute of Mathematics, 2000, Suppl. 1, pp. S228-S253.
  10. Astrovskii A.I., Gaishun I.V. Lineinye sistemy s kvazidifferentsiruemymi koeffitsientami: upravlyaemost' i nablyudaemost' dvizhenii (Linear systems with quasidifferentiable coefficients: controllability and observability of motions), Minsk: Belarus. Navuka, 2013, 213 p.
  11. Astrovskii A.I., Gaishun I.V. Controllability of linear nonstationary systems with scalar input and quasidifferentiable coefficients, Differential Equations, 2013, vol. 49, no. 8, pp. 1018-1026.
  12. Astrovskii A.I., Gaishun I.V. Existence and a method for constructing canonical forms of linear time-varying control systems with scalar input, Differential Equations, 2014, vol. 50, no. 12, pp. 1625-1631.
  13. Popova S.N. Global controllability of the complete set of Lyapunov invariants of periodic systems, Differential Equations, 2003, vol. 39, no. 12, pp. 1713-1723.
  14. Makarov E.K., Popova S.N. Upravlyaemost' asimptoticheskikh invariantov nestatsionarnykh lineinykh system (Controllability of asymptotic invariants of non-stationary linear systems), Minsk: Belarus. Navuka, 2012, 407 p.
  15. Ivanov A.G., Tonkov E.L. Uniform local controllability of a linear system, Differential Equations, 1992, vol. 28, no. 9, pp. 1222-1229.
  16. Ivanov A.G. Linear control systems in the space of Stepanov, Preprint, Ural Science Center, Academy of Science of USSR, Sverdlovsk, 1985, 32 p. (In Russian).
  17. Kadets V.M. Kurs funktsional'nogo analiza (Course of functional analysis), Kharkiv: Kharkiv National University, 2006, 607 p.
  18. Riesz M. Sur les ensembles compacts de fonctions sommables, Acta Litt. Sci. Szeged, 1933, vol. 6, no. 2-3, pp. 136-142.
  19. Kantorovich L.V., Akilov G.P. Funktsional'nyi analiz (Functional analysis), Moscow: Nauka, 1977, 744 p.
  20. Krasnov M.L. Integral'nye uravneniya. Vvedenie v teoriyu (Integral equations. Introduction to the theory), Moscow: Nauka, 1975, 302 p.
  21. Kolmogorov A.N., Fomin S.V. Elementy teorii funktsii и funktsional'nogo analiza (Elements of functions theory and functional analysis), Moscow: Nauka, 1968. 496 p.
  22. Natanson I.P. Teoriya funktsii veshchestvennoi peremennoi (Theory of functions of real variable), Moscow: Nauka, 1974, 480 p.
  23. Silverman L.M., Anderson B.D.O. Controllability, observability and stability of linear systems, SIAM Journal on Control, 1968, vol. 6, no. 1, pp. 121-130.
  24. Derr V.Ya. Nonoscillation of solutions to a linear quasidifferential equation, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 1999, no. 1 (16), pp. 3-105 (in Russian).
  25. Makarov E.K., Popova S.N. The global controllability of a complete set of Lyapunov invariants for two-dimensional linear systems, Differential Equations, 1999, vol. 35, no. 1, pp. 97-107.
  26. Popova S.N. Control over asymptotic invariants of linear systems, Dr. Sci. (Phys.-Math.) Dissertation, Izhevsk, 1992, 264 p. (In Russian).
  27. Popova S.N. On the global controllability of Lyapunov exponents of linear systems, Differential Equations, 2007, vol. 43, no. 8, pp. 1072-1078.
  28. Popova S.N. Global reducibility of linear control systems to systems of scalar type, Differential Equations, 2004, vol. 40, no. 1, pp. 43-49.
  29. Demidovich B.P. Lektsii po matematicheskoi teorii ustoichivosti (Lectures on the mathematical stability theory), Moscow: Nauka, 1967, 472 p.
  30. Brunovsky P. Controllability and linear closed-loop controls in linear periodic systems, Journal of Differential Equations, 1969, vol. 6, no. 3, pp. 296-313.
  31. Tonkov E.L. Remark on controllability of linear periodiс system, Differ. Uravn., 1978, vol. 14, no. 9, pp. 1715-1717 (in Russian).
Full text
<< Previous article
Next article >>