phone +7 (3412) 91 60 92

Archive of Issues


Russia Izhevsk
Year
2024
Volume
34
Issue
2
Pages
286-298
<<
>>
Section Mathematics
Title Spectral properties and non-Hermitian skin effect in the Hatano–Nelson model
Author(-s) Chuburin Yu.P.a, Tinyukova T.S.b
Affiliations Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciencesa, Udmurt State Universityb
Abstract At present, non-Hermitian topological systems continue to be actively studed. In a rigorous approach, we study one of the key non-Hermitian systems — the Hatano–Nelson model $H$. We find the Green function for this Hamiltonian. Using the Green function, we analytically obtain the eigenvalues and eigenfunctions of $H$ for finite and semi-infinite chains, as well as for an infinite chain with a local potential. We discuss the non-Hermitian skin effect for the models mentioned above. We also describe the boundary between localized and resonant eigenfunctions (for the zero spectral parameter, this is the boundary between non-Hermitian topological phases).
Keywords Hatano–Nelson model, eigenvalues, eigenfunctions, non-Hermitian skin effect
UDC 517.958, 530.145.6, 517.984.55, 517.984.66
MSC 81Q10, 81Q15, 47A10, 47A40
DOI 10.35634/vm240207
Received 1 March 2024
Language English
Citation Chuburin Yu.P., Tinyukova T.S. Spectral properties and non-Hermitian skin effect in the Hatano–Nelson model, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2024, vol. 34, issue 2, pp. 286-298.
References
  1. Okuma N., Sato M. Non-Hermitian topological phenomena: A review, Annual Review of Condensed Matter Physics, 2023, vol. 14, pp. 83–107. https://doi.org/10.1146/annurev-conmatphys-040521-033133
  2. Ashida Yuto, Gong Zongping, Ueda Masahito. Non-Hermitian physics, Advances in Physics, 2020, vol. 69, issue 3, pp. 249–435. https://doi.org/10.1080/00018732.2021.1876991
  3. Gong Zongping, Ashida Yuto, Kawabata Kohei, Takasan Kazuaki, Higashikawa Sho, Ueda Masahito. Topological phases of non-Hermitian systems, Physical Review X, 2018, vol. 8, issue 3, 031079. https://doi.org/10.1103/physrevx.8.031079
  4. Bergholtz E.J., Budich J.C., Kunst F.K. Exceptional topology of non-Hermitian systems, Reviews of Modern Physics, 2021, vol. 93, issue 1, 015005. https://doi.org/10.1103/revmodphys.93.015005
  5. Lin Rijia, Tai Tommy, Li Linhu, Lee Ching Hua. Topological non-Hermitian skin effect, Frontiers of Physics, 2023, vol. 18, issue 5, article number: 53605. https://doi.org/10.1007/s11467-023-1309-z
  6. Yao Shunyu, Wang Zhong. Edge states and topological invariants of non-Hermitian systems, Physical Review Letters, 2018, vol. 121, issue 8, 086803. https://doi.org/10.1103/physrevlett.121.086803
  7. Kawabata Kohei, Numasawa Tokiro, Ryu Shinsei. Entanglement phase transition induced by the non-Hermitian skin effect, Physical Review X, 2023, vol. 13, issue 2, 021007. https://doi.org/10.1103/physrevx.13.021007
  8. Hatano Naomichi, Nelson D.R. Localization transitions in non-Hermitian quantum mechanics, Physical Review Letters, 1996, vol. 77, issue 3, pp. 570–573. https://doi.org/10.1103/physrevlett.77.570
  9. Hasan M.Z., Kane C.L. Colloquium: Topological insulators, Reviews of Modern Physics, 2010, vol. 82, issue 4, pp. 3045–3067. https://doi.org/10.1103/revmodphys.82.3045
  10. von Oppen Felix, Peng Yang, Pientka Falko. Topological superconducting phases in one dimension, Topological Aspects of Condensed Matter Physics, Oxford: Oxford University Press, 2017, pp. 387–450. https://doi.org/10.1093/acprof:oso/9780198785781.003.0009
  11. Zhang Xiujuan, Zhang Tian, Lu Ming-Hui, Chen Yan-Feng. A review on non-Hermitian skin effect, Advances in Physics: X, 2022, vol. 7, issue 1, article: 2109431. https://doi.org/10.1080/23746149.2022.2109431
  12. Chuburin Yu.P., Tinyukova T.S. Zero-energy states in the Kitaev finite and semi-infinite model, Physica E: Low-dimensional Systems and Nanostructures, 2023, vol. 146, 115528. https://doi.org/10.1016/j.physe.2022.115528
  13. Taylor J.R., Uberall H. Scattering theory: The quantum theory of nonrelativistic collisions, Physics Today, 1973, vol. 26, issue 5, pp. 55–56. https://doi.org/10.1063/1.3128052
  14. Reed M., Simon B. Methods of modern mathematical physics. Vol. 4. Analysis of operators, Elsevier Science, 1978.
  15. Chuburin Yu.P., Tinyukova T.S. Behavior of Andreev states for topological phase transition, Theoretical and Mathematical Physics, 2021, vol. 208, issue 1, pp. 977–992. https://doi.org/10.1134/s0040577921070102
Full text
<< Previous article
Next article >>