phone +7 (3412) 91 60 92

Archive of Issues


Uzbekistan Urgench
Year
2024
Volume
34
Issue
2
Pages
248-266
<<
>>
Section Mathematics
Title Integration of the mKdV equation with time-dependent coefficients, with an additional term and with an integral source in the class of rapidly decreasing functions
Author(-s) Hoitmetov U.A.a, Sobirov Sh.K.a
Affiliations Urgench State Universitya
Abstract The work is devoted to the integration of the modified Korteweg–de Vries equation with time-dependent coefficients, an additional term and an integral source in the class of rapidly decreasing functions using the inverse scattering problem method. In this paper, we consider the case when the Dirac operator included in the Lax pairs is not self-adjoint, therefore the eigenvalues of the Dirac operator can be multiples. The evolution of scattering data is obtained for the non-self-adjoint Dirac operator, the potential of which is a solution of the modified Korteweg–de Vries equation with time-dependent coefficients, with an additional term and with an integral source of a class of rapidly decreasing functions. An example is given to illustrate the application of the results obtained.
Keywords non-self-adjoint Dirac operator, Jost solutions, scattering data, Lax pairs
UDC 517.957
MSC 34L25, 35P25, 47A40, 37K15
DOI 10.35634/vm240205
Received 9 April 2024
Language Russian
Citation Hoitmetov U.A., Sobirov Sh.K. Integration of the mKdV equation with time-dependent coefficients, with an additional term and with an integral source in the class of rapidly decreasing functions, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2024, vol. 34, issue 2, pp. 248-266.
References
  1. Wadati M. The exact solution of the modified Korteweg–de Vries equation, Journal of the Physical Society of Japan, 1972, vol. 32, no. 6, p. 1681. https://doi.org/10.1143/JPSJ.32.1681
  2. Lamb G.L. Elements of soliton theory, New York: Wiley, 1980.
  3. Bogoyavlenskii O.I. Oprokidyvayushchiesya solitony (Overturning solitons), Moscow: Nauka, 1991.
  4. Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M. Method for solving the Korteweg–de Vries equation, Physical Review Letters, 1967, vol. 19, issue 19, pp. 1095–1097. https://doi.org/10.1103/PhysRevLett.19.1095
  5. Khasanov A.B., Hoitmetov U.A. Integration of the loaded Korteweg–de Vries equation with a self-consistent source in the class of rapidly decreasing complex-valued functions, Transactions of National Academy of Sciences of Azerbaijan. Series of Physical-Technical and Mathematical Sciences, 2022, vol. 42, no. 4, pp. 87–101. https://zbmath.org/7699500
  6. Hoitmetov U.A. Integration of the loaded KdV equation with a self-consistent source of integral type in the class of rapidly decreasing complex-valued functions, Siberian Advances in Mathematics, 2022, vol. 32, issue 2, pp. 102–114. https://doi.org/10.1134/S1055134422020043
  7. Hoitmetov U. Integration of the loaded general Korteweg–de Vries equation in the class of rapidly decreasing complex-valued functions, Eurasian Mathematical Journal, 2022, vol. 13, no. 2, pp. 43–54. https://doi.org/10.32523/2077-9879-2022-13-2-43-54
  8. Khasanov A.B., Hoitmetov U.A. On complex-valued solutions of the general loaded Korteweg–de Vries equation with a source, Differential Equations, 2022, vol. 58, issue 3, pp. 381–391. https://doi.org/10.1134/S0012266122030089
  9. Hoitmetov U.A. On the Cauchy problem for the mKdV-sine-Gordon equation with an additional term, Acta Applicandae Mathematicae, 2023, vol. 184, issue 1, article number: 7. https://doi.org/10.1007/s10440-023-00561-x
  10. Hoitmetov U.A. Integration of the loaded mKdV-sine-Gordon equation with a source, Sibirskie Èlektronnye Matematicheskie Izvestiya, 2023, vol. 20, issue 2, pp. 859–879. https://www.mathnet.ru/eng/semr1616
  11. Sobirov Sh.K., Hoitmetov U.A. Integration of the modified Korteweg–de Vries equation with time-dependent coefficients and with a self-consistent source, Vladikavkazskii Matematicheskii Zhurnal, 2023, vol. 25, no. 3, pp. 123–142 (in Russian). https://doi.org/10.46698/q2165-6700-0718-r
  12. Khasanov A.B., Hoitmetov U.A., Sobirov Sh.Q. Integration of the mKdV equation with nonstationary coefficients and additional terms in the case of moving eigenvalues, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2023, vol. 61, pp. 137–155. https://doi.org/10.35634/2226-3594-2023-61-08
  13. Mamedov K.A. Integration of mKdV equation with a self-consistent source in the class of finite density functions in the case of moving eigenvalues, Russian Mathematics, 2020, vol. 64, issue 10, pp. 66–78. https://doi.org/10.3103/S1066369X20100072
  14. Babajanov B.A., Ruzmetov M.M. Solution of the finite Toda lattice with self-consistent source, Lobachevskii Journal of Mathematics, 2023, vol. 44, issue 7, pp. 2587–2600. https://doi.org/10.1134/S1995080223070089
  15. Babajanov B.A., Ruzmetov M.M., Sadullaev Sh.O. Integration of the finite complex Toda lattice with a self-consistent source, Partial Differential Equations in Applied Mathematics, 2023, vol. 7, 100510. https://doi.org/10.1016/j.padiff.2023.100510
  16. Babajanov B.A., Azamatov A.Sh., Atajanova R.B. Integration of the Kaup–Boussinesq system with time-dependent coefficients, Theoretical and Mathematical Physics, 2023, vol. 216, issue 1, pp. 961–972. https://doi.org/10.1134/S004057792307005X
  17. Babajanov B., Fečkan M., Babadjanova A. On the differential-difference sine-Gordon equation with an integral type source, Mathematica Slovaca, 2023, vol. 73, issue 6, pp. 1499–1510. https://doi.org/10.1515/ms-2023-0108
  18. Matsutani Shigeki, Tsuru Hideo. Reflectionless quantum wire, Journal of the Physical Society of Japan, 1991, vol. 60, no. 11, pp. 3640–3644. https://doi.org/10.1143/JPSJ.60.3640
  19. Ono Hiroaki. Soliton fission in anharmonic lattices with reflectionless inhomogeneity, Journal of the Physical Society of Japan, 1992, vol. 61, no. 12, pp. 4336–4343. https://doi.org/10.1143/JPSJ.61.4336
  20. Kakutani Tsunehiko, Ono Hiroaki. Weak non-linear hydromagnetic waves in a cold collision-free plasma, Journal of the Physical Society of Japan, 1969, vol. 26, no. 5, pp. 1305–1318. https://doi.org/10.1143/JPSJ.26.1305
  21. Wu Jianping, Geng Xianguo. Inverse scattering transform and soliton classification of the coupled modified Korteweg–de Vries equation, Communications in Nonlinear Science and Numerical Simulation, 2017, vol. 53, pp. 83–93. https://doi.org/10.1016/j.cnsns.2017.03.022
  22. Urazboev G.U., Xoitmetov U.A., Babadjanova A.K. Integration of the matrix modified Korteweg–de Vries equation with an integral-type source, Theoretical and Mathematical Physics, 2020, vol. 203, issue 3, pp. 734–746. https://doi.org/10.1134/S0040577920060033
  23. Vaneeva O. Lie symmetries and exact solutions of variable coefficient mKdV equations: An equivalence based approach, Communications in Nonlinear Science and Numerical Simulation, 2012, vol. 17, issue 2, pp. 611–618. https://doi.org/10.1016/j.cnsns.2011.06.038
  24. Pradhan K., Panigrahi P.K. Parametrically controlling solitary wave dynamics in the modified Korteweg–de Vries equation, Journal of Physics A: Mathematical and General, 2006, vol. 39, no. 20, pp. 343–348. https://doi.org/10.1088/0305-4470/39/20/L08
  25. Wazwaz A.-M. Two new integrable modified KdV equations, of third- and fifth-order, with variable coefficients: multiple real and multiple complex soliton solutions, Waves in Random and Complex Media, 2021, vol. 31, issue 5, pp. 867–878. https://doi.org/10.1080/17455030.2019.1631504
  26. Ablowitz M.J., Segur H. Solitons and inverse scattering transform, Philadelphia: SIAM, 1981. https://zbmath.org/0472.35002
  27. Dodd R.K., Eilbeck J.C., Gibbon J.D., Morris H.C. Solitons and nonlinear wave equations, London: Academic Press, 1982. https://zbmath.org/0496.35001
  28. Vladimirov V.S. Uravneniya matematicheskoi fiziki (Equations of mathematical physics), Moscow: Nauka, 1967.
Full text
<< Previous article
Next article >>