phone +7 (3412) 91 60 92

Archive of Issues


Russia Saint Petersburg; Tambov
Year
2022
Volume
32
Issue
3
Pages
361-382
<<
>>
Section Mathematics
Title On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation
Author(-s) Benarab S.ab, Panasenko E.A.ab
Affiliations Leonhard Euler International Mathematical Institutea, Tambov State Universityb
Abstract Set-valued mappings acting from a partially ordered space $X=(X,\leq)$ to a set $Y$ on which a reflexive binary relation $\vartheta$ is given (this relation is not supposed to be antisymmetric or transitive, i.e., $\vartheta$ is not an order in $Y$), are considered. For such mappings, analogues of the concepts of covering and monotonicity are introduced. These concepts are used to study the inclusion $F(x)\ni \tilde{y},$ where $F\colon X \rightrightarrows Y,$ $\tilde{y}\in Y.$ It is assumed that for some given $x_0 \in X,$ there exists $y_{0} \in F(x_{0})$ such that $(\tilde{y},y_{0}) \in \vartheta.$ Conditions for the existence of a solution $x\in X$ satisfying the inequality $x\leq x_0$ are obtained, as well as those for the existence of minimal and least solutions. The property of stability of solutions of the considered inclusion to changes of the set-valued mapping $F$ and of the element $\widetilde{y}$ is also defined and investigated. Namely, the sequence of “perturbed” inclusions $F_i(x)\ni \tilde{y}_i,$ $i\in \mathbb{N},$ is assumed, and the conditions of existence of solutions $x_i \in X$ such that for any increasing sequence of integers $\{i_n\}$ there holds $\sup_{n \in \mathbb{N}}\{x_{i_{n}}\}= x,$ where $x \in X$ is a solution of the initial inclusion, are derived.
Keywords set-valued mapping, ordered space, operator inclusion, existence of solutions
UDC 517.98, 512.562
MSC 47H04, 06A06
DOI 10.35634/vm220302
Received 17 March 2022
Language Russian
Citation Benarab S., Panasenko E.A. On one inclusion with a mapping acting from a partially ordered set to a set with a reflexive binary relation, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2022, vol. 32, issue 3, pp. 361-382.
References
  1. Aubin J.-P., Ekeland I. Applied nonlinear analysis, New York: Wiley, 1984. Translated under the title Prikladnoi nelineinyi analiz, Moscow: Mir, 1988.
  2. Arutyunov A.V. Lektsii po vypuklomu i mnogoznachnomu analizu (Lectures on convex and set-valued analysis), Moscow: Fizmatlit, 2014.
  3. Borisovich Yu.G., Gel'man B.D., Myshkis A.D., Obukhovskii V.V. Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsial'nykh vklyuchenii (Introduction to the theory of set-valued mappings and differential inclusions), Moscow: Librokom, 2011.
  4. Chentsov A.G., Khachai D.M. Relaxation of pursuit-evasion differential game and program absorption operator, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2020, vol. 30, issue 1, pp. 64-91 (in Russian). https://doi.org/10.35634/vm200106
  5. Zhukovskiy E.S., Panasenko E.A. On fixed points of multi-valued maps in metric spaces and differential inclusions, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2013, issue 2, pp. 12-26. http://doi.org/10.20537/vm130202
  6. Clark F.H. Optimization and nonsmooth analysis, New York: Wiley, 1983.
    Translated under the title Optimizatsiya i negladkii analiz, Moscow: Nauka, 1988.
  7. Brøndsted A. On a lemma of Bishop and Phelps, Pacific Journal of Mathematics, 1974, vol. 55, no. 2, pp. 335-341. https://doi.org/10.2140/pjm.1974.55.335
  8. Granas A., Dugundji J. Fixed point theory, New York: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8
  9. Lyusternik L.A., Sobolev V.I. Kratkii kurs funktsional'nogo analiza (Short course on functional analysis), Moscow: Vysshaya shkola, 1982.
  10. Birkhoff G. Lattice theory, New York: American Mathematical Society, 1948.
    Translated under the title Teoriya struktur, Moscow: Inostrannaya Literatura, 1952.
  11. Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. Coincidence points of set-valued mappings in partially ordered spaces, Doklady Mathematics, 2013, vol. 88, no. 3, pp. 727-729. https://doi.org/10.1134/S106456241306029X
  12. Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. On coincidence points of mappings in partially ordered spaces, Doklady Mathematics, 2013, vol. 88, no. 3, pp. 710-713. https://doi.org/10.1134/S1064562413060239
  13. Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. Coincidence points principle for mappings in partially ordered spaces, Topology and its Applications, 2015, vol. 179, pp. 13-33. https://doi.org/10.1016/j.topol.2014.08.013
  14. Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. Coincidence points principle for set-valued mappings in partially ordered spaces, Topology and its Applications, 2016, vol. 201, pp. 330-343. https://doi.org/10.1016/j.topol.2015.12.044
  15. Benarab S., Zhukovskiy E.S., Merchela W. Theorems on perturbations of covering mappings in spaces with a distance and in spaces with a binary relation, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, vol. 25, no. 4, pp. 52-63 (in Russian). https://doi.org/10.21538/0134-4889-2019-25-4-52-63
  16. Zhukovskiy E.S. On ordered-covering mappings and implicit differential inequalities, Differential Equations, 2016, vol. 52, no. 12, pp. 1539-1556. https://doi.org/10.1134/S0012266116120028
  17. Zhukovskiy E.S. On order covering maps in ordered spaces and Chaplygin-type inequalities, St. Petersburg Mathematical Journal, 2019, vol. 30, issue 1, pp. 73-94. https://doi.org/10.1090/spmj/1530
  18. Benarab S., Zhukovskiy E.S. Coincidence points of two mappings acting from a partially ordered space to an arbitrary set, Russian Mathematics, 2020, vol. 64, no. 5, pp. 8-16. https://doi.org/10.3103/S1066369X20050023
  19. Benarab S., Zhukovskaya Z.T., Zhukovskiy E.S., Zhukovskiy S.E. Functional and differential inequalities and their applications to control problems, Differential Equations, 2020, vol. 56, no. 11, pp. 1440-1451. https://doi.org/10.1134/S00122661200110051
  20. Benarab S. On Chaplygin's theorem for an implicit differential equation of order $n$, Russian Universities Reports. Mathematics, 2021, vol. 26, no. 135, pp. 225-233 (in Russian). https://doi.org/10.20310/2686-9667-2021-26-135-225-233
  21. Benarab S. Two-sided estimates for solutions of boundary value problems for implicit differential equations, Russian Universities Reports. Mathematics, 2021, vol. 26, no. 134, pp. 216-220 (in Russian). https://doi.org/10.20310/2686-9667-2021-26-134-216-220
  22. Kolmogorov A.N., Fomin S.V. Elementy teorii funktsii i funktsional'nogo analiza (Elements of the theory of functions and functional analysis), Moscow: Nauka, 1981.
  23. Aleskerov F.T., Khabina E.L., Shvarts D.A. Binary relations, graphs and collective solutions, Moscow: State University Higher School of Economics, 2006.
  24. Heinonen J. Lectures on analysis on metric spaces, New York: Springer, 2001. https://doi.org/10.1007/978-1-4613-0131-8
  25. Arutyunov A.V., Greshnov A.V. $(q_1,q_2)$-quasimetric spaces. Covering mappings and coincidence points, Izvestiya: Mathematics, 2018, vol. 82, no. 2, pp. 245-272. https://doi.org/10.1070/IM8546
  26. Zhukovskiy E.S. The fixed points of contractions of $f$-quasimetric spaces, Siberian Mathematical Journal, 2018, vol. 59, no. 6, pp. 1063-1072. https://doi.org/10.1134/S0037446618060095
  27. Danford N., Schwartz J.T. Linear operators. P. 1. General theory, New York: Interscience, 1958.
  28. Shragin I.V. Superpositional measurability under generalized Caratheodory conditions, Tambov University Reports. Series: Natural and Technical Sciences, 2014, vol. 19, no. 2, pp. 476-478 (in Russian). https://elibrary.ru/item.asp?id=21422118
  29. Serova I.D. Superpositional measurability of a multivalued function under generalized Caratheodory conditions, Russian Universities Reports. Mathematics, 2021, vol. 26, no. 135, pp. 305-314 (in Russian). https://doi.org/10.20310/2686-9667-2021-26-135-305-314
  30. Birkhoff G. Lattice theory, Providence: American Mathematical Society, 1967. Translated under the title Teoriya reshetok, M.: Nauka, 1984.
  31. Arutyunov A.V. Stability of coincidence points and properties of covering mappings, Mathematical Notes, 2009, vol. 86, no. 2, pp. 153-158. https://doi.org/10.1134/S0001434609070177
  32. Fomenko T.N. Stability of cascade search, Izvestiya: Mathematics, 2010, vol. 74, no. 5, pp. 1051-1068. https://doi.org/10.1070/IM2010v074n05ABEH002515
Full text
<< Previous article
Next article >>