phone +7 (3412) 91 60 92

Archive of Issues


DPR; Ukraine Donetsk
Year
2022
Volume
32
Issue
1
Pages
3-17
>>
Section Mathematics
Title Vector fields with zero flux through circles of fixed radius on $\mathbb{H}^2$
Author(-s) Volchkova N.P.a, Volchkov V.V.b
Affiliations Donetsk National Technical Universitya, Donetsk National Universityb
Abstract A classic property of a periodic function on the real axis is the possibility of its representation by a trigonometric Fourier series. The natural analogue of the periodicity condition in Euclidean space $\mathbb{R}^m$ is the constancy of integrals of a function over all balls (or spheres) of fixed radius. Functions with the indicated property can be expanded in a Fourier series in terms of spherical harmonics whose coefficients are expanded into series in Bessel functions. This fact can be generalized to vector fields in $\mathbb{R}^m$ with zero flux through spheres of fixed radius. In this paper we study vector fields which have zero flux through every circle of fixed radius on the Lobachevskii plane $\mathbb{H}^2$. A description of such fields in the form of series in terms of hypergeometric functions is obtained. These results can be used to solve problems concerning harmonic analysis of vector fields on domains in $\mathbb{H}^2$.
Keywords vector fields, Lobachevskii plane, zero spherical means, Horn hypergeometric series
UDC 517.588
MSC 53C65, 44A35
DOI 10.35634/vm220101
Received 28 January 2022
Language Russian
Citation Volchkova N.P., Volchkov V.V. Vector fields with zero flux through circles of fixed radius on $\mathbb{H}^2$, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2022, vol. 32, issue 1, pp. 3-17.
References
  1. Zalcman L. A bibliographic survey of the Pompeiu problem, Approximation by solutions of partial differential equations, Dordrecht: Springer, 1992, pp. 185-194. https://doi.org/10.1007/978-94-011-2436-2_17
  2. Berenstein C.A., Struppa D.C. Complex analysis and convolution equations, Several complex variables. V: Complex analysis in partial differential equations and mathematical physics, Berlin: Springer, 1993, vol. 54, pp. 1-108. https://doi.org/10.1007/978-3-642-58011-6_1
  3. Zalcman L. Supplementary bibliography to “A bibliographic survey of the Pompeiu problem”, Radon Transform and Tomography, 2001, vol. 278, pp. 69-74.
  4. Volchkov V.V. Integral geometry and convolution equations, Dordrecht: Springer, 2003. https://doi.org/10.1007/978-94-010-0023-9
  5. Volchkov V.V., Volchkov Vit.V. Harmonic analysis of mean periodic functions on symmetric spaces and the Heisenberg group, London: Springer, 2009. https://doi.org/10.1007/978-1-84882-533-8
  6. Volchkov V.V., Volchkov Vit.V. Offbeat integral geometry on symmetric spaces, Basel: Birkhäuser, 2013. https://doi.org/10.1007/978-3-0348-0572-8
  7. Smith J.D. Harmonic analysis of scalar and vector fields in $\mathbb R$$n$ , Mathematical Proceedings of the Cambridge Philosophical Society, 1972, vol. 72, issue 3, pp. 403-416. https://doi.org/10.1017/S0305004100047241
  8. John F. Plane waves and spherical means. Applied to partial differential equations, New York: Springer, 1981. https://doi.org/10.1007/978-1-4613-9453-2
  9. Thangavelu S. Spherical means and $\mathrm{CR}$ functions on the Heisenberg group, Journal d'Analyse Mathématique, 1994, vol. 63, pp. 255-286. https://doi.org/10.1007/BF03008426
  10. Degtyarev S.P. Liouville property for solutions of the linearized degenerate thin film equation of fourth order in a halfspace, Results in Mathematics, 2016, vol. 70, pp. 137-161. https://doi.org/10.1007/s00025-015-0467-x
  11. Ungar P. Freak theorem about functions on a sphere, Journal of the London Mathematical Society, 1954, vol. s1-29, issue 1, pp. 100-103. https://doi.org/10.1112/JLMS/S1-29.1.100
  12. Schneider R. Functions on a sphere with vanishing integrals over certain subspheres, Journal of Mathematical Analysis and Applications, 1969, vol. 26, issue 2, pp. 381-384. https://doi.org/10.1016/0022-247x(69)90160-7
  13. Delsarte J. Note sur une propriété nouvelle des fonctions harmoniques, C. R. Acad. Sci. Paris, 1958, vol. 246, pp. 1358-1360. https://zbmath.org/0084.09403
  14. Netuka I., Veselý J. Mean value property and harmonic functions, Classical and modern potential theory and applications, Dordrecht: Springer, 1994, pp. 359-398. https://doi.org/10.1007/978-94-011-1138-6_29
  15. Kuznetsov N. Mean value properties of harmonic functions and related topics (a survey), Journal of Mathematical Sciences, 2019, vol. 242, issue 2, pp. 177-199. https://doi.org/10.1007/s10958-019-04473-w
  16. Trofymenko O.D. Convolution equations and mean-value theorems for solutions of linear elliptic equations with constant coefficients in the complex plane, Journal of Mathematical Sciences, 2018, vol. 229, issue 2, pp. 96-107. https://doi.org/10.1007/s10958-018-3664-9
  17. Trofymenko O.D. Mean value theorems for polynomial solutions of linear elliptic equations with constant coefficients in the complex plane, Journal of Mathematical Sciences, 2021, vol. 254, issue 3, pp. 439-443. https://doi.org/10.1007/s10958-021-05315-4
  18. Volchkov V.V. A definitive version of the local two-radii theorem, Sb. Math., 1995, vol. 186, no. 6, pp. 783-802. https://doi.org/10.1070/SM1995v186n06ABEH000043
  19. Volchkov V.V. Solution of the support problem for several function classes, Sb. Math., 1997, vol. 188, no. 9, pp. 1279-1294. https://doi.org/10.1070/SM1997v188n09ABEH000255
  20. Volchkov V.V., Volchkov Vit.V. Continuous mean periodic extension of functions from an interval, Dokl. Math., 2021, vol. 103, no. 1, pp. 14-18. https://doi.org/10.1134/S106456242101018X
  21. Volchkov V.V., Volchkov Vit.V. Continuous extension of functions from a segment to functions in $\mathbb{R}$$n$ with zero ball means, Russian Mathematics, 2021, vol. 65, no. 3, pp. 1-11. https://doi.org/10.3103/S1066369X21030014
  22. Volchkova N.P., Volchkov Vit.V., Ishchenko N.A. Erasing of singularities of functions with zero integrals over disks, Vladikavkazskii Matematicheskii Zhurnal, 2021, vol. 23, no. 2, pp. 19-33 (in Russian). https://doi.org/10.46698/u3425-9673-4629-c
  23. Volchkov Vit.V., Volchkova N.P. The removability problem for functions with zero spherical means, Siberian Mathematical Journal, 2017, vol. 58, no. 3, pp. 419-426. https://doi.org/10.1134/S0037446617030065
  24. Berenstein C.A., Gay R., Yger A. Inversion of the local Pompeiu transform, Journal d'Analyse Mathématique, 1990, vol. 54, pp. 259-287. https://doi.org/10.1007/bf02796152
  25. Berkani M., El Harchaoui M., Gay R. Inversion de la transformation de Pompéiu locale dans l'espace hyperbolique quaternique - Cas des deux boules, Complex Variables, Theory and Application: An International Journal, 2000, vol. 43, issue 1, pp. 29-57. https://doi.org/10.1080/17476930008815300
  26. Volchkov Vit.V., Volchkova N.P. Inversion of the local Pompeiu transformation on a quaternionic hyperbolic space, Dokl. Math., 2001, vol. 64, no. 1, pp. 90-93. https://zbmath.org/1041.43005
  27. Volchkov Vit.V., Volchkova N.P. Inversion theorems for the local Pompeiu transformation in the quaternion hyperbolic space, St. Petersburg Math. J., 2004, vol. 15, no. 5, pp. 753-771. https://doi.org/10.1090/S1061-0022-04-00830-1
  28. Rubin B. Reconstruction of functions on the sphere from their integrals over hyperplane sections, Analysis and Mathematical Physics, 2019, vol. 9, issue 4, pp. 1627-1664. https://doi.org/10.1007/s13324-019-00290-1
  29. Salman Y. Recovering functions defined on the unit sphere by integration on a special family of sub-spheres, Analysis and Mathematical Physics, 2017, vol. 7, issue 2, pp. 165-185. https://doi.org/10.1007/s13324-016-0135-7
  30. Hielscher R., Quellmalz M. Reconstructing an function on the sphere from its means along vertical slices, Inverse Problems and Imaging, 2016, vol. 10, issue 3, pp. 711-739. https://doi.org/10.3934/ipi.2016018
  31. Ochakovskaya O.A. Approximation in $L$$p$ by linear combinations of the indicators of balls, Journal of Mathematical Sciences, 2016, vol. 218, no. 1, pp. 39-46. https://doi.org/10.1007/s10958-016-3009-5
  32. Volchkov V.V., Volchkov Vit.V. Interpolation problems for functions with zero integrals over balls of fixed radius, Doklady Mathematics, 2020, vol. 101, no. 1, pp. 16-19. https://doi.org/10.1134/S1064562420010214
  33. Volchkov Vit.V., Volchkova N.P. Vector fields with zero flux through spheres of fixed radius, Vladikavkazskii Matematicheskii Zhurnal, 2018, vol. 20, issue 4, pp. 20-34 (in Russian). https://doi.org/10.23671/VNC.2018.4.23384
  34. Ahlfors L.V. Möebius transformations in several dimensions, Minneapolis: University of Minnesota, 1981. https://zbmath.org/0517.30001
  35. Bateman H., Erdélyi A. Higher transcendental functions. Vols. I, II, New York: McGraw-Hill, 1953.
  36. Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integrals and series. Vol. 3. Special functions. Additional chapters, Moscow: Fizmatlit, 2003.
  37. Volchkov V.V. A definitive version of the local two-radii theorem on hyperbolic spaces, Izv. Math., 2001, vol. 65, no. 2, pp. 207-229. https://doi.org/10.1070/IM2001v065n02ABEH000326
  38. Gel'fand I.M., Graev M.I., Retakh V.S. General hypergeometric systems of equations and series of hypergeometric type, Russian Mathematical Surveys, 1992, vol. 47, no. 4, pp. 1-88. https://doi.org/10.1070/RM1992v047n04ABEH000915
  39. Sadykov T.M., Tsikh A.K. Gipergeometricheskie i algebraicheskie funktsii mnogikh peremennykh (Hypergeometric and algebraic functions in several variables), Moscow: Nauka, 2014. https://elibrary.ru/item.asp?id=41147144
  40. Vilenkin N.Ja. Special functions and the theory of group representations, AMS, 1968. https://doi.org/10.1090/mmono/022
Full text
Next article >>