phone +7 (3412) 91 60 92

Archive of Issues


Russia Izhevsk
Year
2020
Volume
30
Issue
4
Pages
628-644
<<
>>
Section Mechanics
Title Nonintegrability of the problem of a spherical top rolling on a vibrating plane
Author(-s) Kilin A.A.a, Pivovarova E.N.a
Affiliations Udmurt State Universitya
Abstract This paper investigates the rolling motion of a spherical top with an axisymmetric mass distribution on a smooth horizontal plane performing periodic vertical oscillations. For the system under consideration, equations of motion and conservation laws are obtained. It is shown that the system admits two equilibrium points corresponding to uniform rotations of the top about the vertical symmetry axis. The equilibrium point is stable when the center of mass is located below the geometric center, and is unstable when the center of mass is located above it. The equations of motion are reduced to a system with one and a half degrees of freedom. The reduced system is represented as a small perturbation of the problem of the Lagrange top motion. Using Melnikov’s method, it is shown that the stable and unstable branches of the separatrix intersect transversally with each other. This suggests that the problem is nonintegrable. Results of computer simulation of the top dynamics near the unstable equilibrium point are presented.
Keywords spherical top, vibrating plane, Lagrange case, separatrix splitting, Melnikov's integral, nonintegrability, chaos, period advance map
UDC 531.36
MSC 70E18, 37J30
DOI 10.35634/vm200407
Received 25 September 2020
Language Russian
Citation Kilin A.A., Pivovarova E.N. Nonintegrability of the problem of a spherical top rolling on a vibrating plane, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2020, vol. 30, issue 4, pp. 628-644.
References
  1. Stephenson A. On a new type of dynamical stability, Mem. Proc. Manch. Lit. Phil. Sci., 1908, vol. 52, pp. 1-10.
  2. Kapitza P.L. Dynamic stability of a pendulum when its point of suspension vibrates, Soviet Phys. JETP, 1951, vol. 21, no. 5, pp. 588-597 (in Russian).
  3. Kapitza P.L. A pendulum with oscillating suspension, Uspekhi Fizicheskikh Nauk, 1951, vol. 44, no. 5, pp. 7-20 (in Russian). https://doi.org/10.3367/UFNr.0044.195105b.0007
  4. Kholostova O.V. The dynamics of a Lagrange top with a vibrating suspension point, J. Appl. Math. Mech., 1999, vol. 63, no. 5, pp. 741-750. https://doi.org/10.1016/S0021-8928(99)00094-5
  5. Kholostova O.V. The stability of a “sleeping” Lagrange for with a vibrating suspension point, J. Appl. Math. Mech., 2000, vol. 64, no. 5, pp. 821-831. https://doi.org/10.1016/S0021-8928(00)00110-6
  6. Kholostova O.V. Zadachi dinamiki tverdykh tel s vibriruyushchim podvesom (Problems of dynamics of rigid bodies with a vibrating suspension), Moscow-Izhevsk: Institute of Computer Science, 2016.
  7. Markeev A.P. On the motion of a heavy dynamically symmetric rigid body with vibrating suspension point, Mechanics of Solids, 2012, vol. 47, no. 4, pp. 373-379. https://doi.org/10.3103/S0025654412040012
  8. Markeyev A.P. The equations of the approximate theory of the motion of a rigid body with a vibrating suspension point, J. Appl. Math. Mech., 2011, vol. 75, no. 2, pp. 132-139. https://doi.org/10.1016/j.jappmathmech.2011.05.002
  9. Markeev A.P. Tochki libratsii v nebesnoi mekhanike i kosmodinamike (Libration points in celestial mechanics and space dynamics), Moscow: Nauka, 1978.
  10. Markeev A.P. Lineinye gamil'tonovy sistemy i nekotorye zadachi ob ustoichivosti dvizheniya sputnika otnositel'no tsentra mass (Linear Hamiltonian systems and some problems of stability of the satellite center of mass), Moscow-Izhevsk: Regular and Chaotic Dynamics, Institute of Computer Science, 2009.
  11. Kilin A.A., Pivovarova E.N. Stability and stabilization of steady rotations of a spherical robot on a vibrating base, Regular and Chaotic Dynamics, 2020, vol. 25, no. 6, pp. 729-752. https://doi.org/10.1134/S1560354720060155
  12. Vetchanin E.V., Mikishanina E.A. Vibrational stability of periodic solutions of the Liouville equations, Russian Journal of Nonlinear Dynamics, 2019, vol. 15, no. 3, pp. 351-363. https://doi.org/10.20537/nd190312
  13. Awrejcewicz J., Kudra G. Mathematical modelling and simulation of the bifurcational wobblestone dynamics, Discontinuity, Nonlinearity, and Complexity, 2014, vol. 3, no. 2, pp. 123-132. https://doi.org/10.5890/DNC.2014.06.002
  14. Awrejcewicz J., Kudra G. Dynamics of a wobblestone lying on vibrating platform modified by magnetic interactions, Procedia IUTAM, 2017, vol. 22, pp. 229-236. https://doi.org/10.1016/j.piutam.2017.08.026
  15. Kilin A.A., Pivovarova E.N. Chaplygin top with a periodic gyrostatic moment, Russian Journal of Mathematical Physics, 2018, vol. 25, no. 4, pp. 509-524. https://doi.org/10.1134/S1061920818040088
  16. Mamaev I.S., Vetchanin E.V. Dynamics of rubber Chaplygin sphere under periodic control, Regular and Chaotic Dynamics, 2020, vol. 25, no. 2, pp. 215-236. https://doi.org/10.1134/S1560354720020069
  17. Bizyaev I.A., Borisov A.V., Mamaev I.S. Different models of rolling for a robot ball on a plane as a generalization of the Chaplygin ball problem, Regular and Chaotic Dynamics, 2019, vol. 24, no. 5, pp. 560-582. https://doi.org/10.1134/S1560354719050071
  18. Bizyaev I.A., Mamaev I.S. Separatrix splitting and nonintegrability in the nonholonomic rolling of a generalized Chaplygin sphere, International Journal of Non-Linear Mechanics, 2020, vol. 126, 103550. https://doi.org/10.1016/j.ijnonlinmec.2020.103550
  19. Ilin K.I., Moffatt H.K., Vladimirov V.A. Dynamics of a rolling robot, Proceedings of the National Academy of Sciences, 2017, vol. 114, no. 49, pp. 12858-12863. https://doi.org/10.1073/pnas.1713685114
  20. Putkaradze V., Rogers S. On the dynamics of a rolling ball actuated by internal point masses, Meccanica, 2018, vol. 53, no. 15, pp. 3839-3868. https://doi.org/10.1007/s11012-018-0904-5
  21. Putkaradze V., Rogers S.M. On the normal force and static friction acting on a rolling ball actuated by internal point masses, Regular and Chaotic Dynamics, 2019, vol. 24, no. 2, pp. 145-170. https://doi.org/10.1134/S1560354719020023
  22. Karavaev Yu.L., Kilin A.A. Nonholonomic dynamics and control of a spherical robot with an internal omniwheel platform: theory and experiments, Proceedings of the Steklov Institute of Mathematics, 2016, vol. 295, no. 1, pp. 158-167. https://doi.org/10.1134/S0081543816080095
  23. Bai Y., Svinin M., Yamamoto M. Dynamics-based motion planning for a pendulum-actuated spherical rolling robot, Regular and Chaotic Dynamics, 2018, vol. 23, no. 4, pp. 372-388. https://doi.org/10.1134/S1560354718040020
  24. Bizyaev I.A., Borisov A.V., Kozlov V.V., Mamaev I.S. Fermi-like acceleration and power-law energy growth in nonholonomic systems, Nonlinearity, 2019, vol. 32, no. 9, pp. 3209-3233. https://doi.org/10.1088/1361-6544/ab1f2d
  25. Bizyaev I.A., Borisov A.V., Mamaev I.S. The Chaplygin sleigh with parametric excitation: chaotic dynamics and nonholonomic acceleration, Regular and Chaotic Dynamics, 2017, vol. 22, no. 8, pp. 955-975. https://doi.org/10.1134/S1560354717080056
  26. Bizyaev I.A., Borisov A.V., Mamaev I.S. Exotic dynamics of nonholonomic roller racer with periodic control, Regular and Chaotic Dynamics, 2018, vol. 23, no. 7-8, pp. 983-994. https://doi.org/10.1134/S1560354718070122
  27. Kuznetsov S.P. Regular and chaotic dynamics of a Chaplygin sleigh due to periodic switch of the nonholonomic constraint, Regular and Chaotic Dynamics, 2018, vol. 23, no. 2, pp. 178-192. https://doi.org/10.1134/S1560354718020041
  28. Borisov A.V., Kuznetsov S.P. Comparing dynamics initiated by an attached oscillating particle for the nonholonomic model of a Chaplygin sleigh and for a model with strong transverse and weak longitudinal viscous friction applied at a fixed point on the body, Regular and Chaotic Dynamics, 2018, vol. 23, no. 7-8, pp. 803-820. https://doi.org/10.1134/S1560354718070018
  29. Fedonyuk V., Tallapragada P. The dynamics of a Chaplygin sleigh with an elastic internal rotor, Regular and Chaotic Dynamics, 2019, vol. 24, no. 1, pp. 114-126. https://doi.org/10.1134/S1560354719010076
  30. Bizyaev I.A., Mamaev I.S. Dynamics of the nonholonomic Suslov problem under periodic control: unbounded speedup and strange attractors, Journal of Physics A: Mathematical and Theoretical, 2020, vol. 53, no. 18, 185701. https://doi.org/10.1088/1751-8121/ab7e52
  31. Poincaré H. Sur le problème des trois corps et les équations de la dynamique, Acta Mathematica, 1890, vol. 13, no. 1. pp. 1-270. https://projecteuclid.org/euclid.acta/1485881725
  32. Mel'nikov V.K. On the stability of a center for time-periodic perturbations, Trudy Moskovskogo Matematicheskogo Obshchestva, 1963, vol. 12, pp. 3-52 (in Russian). http://mi.mathnet.ru/eng/mmo137
  33. Dovbysh S.A. Splitting of separatrices of unstable uniform rotations and nonintegrability of a perturbed Lagrange problem, Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1990, no. 3, pp. 70-77 (in Russian). http://mi.mathnet.ru/eng/vmumm2666
  34. Ziglin S.L. Dichotomy of the separatrices, bifurcation of solutions and nonexistence of an integral in the dynamics of a rigid body, Trudy Moskovskogo Matematicheskogo Obshchestva, 1980, vol. 41, pp. 287-303 (in Russian). http://mi.mathnet.ru/eng/mmo394
  35. Burov A.A., Nikonov V.I. On the nonlinear Meissner equation, International Journal of Non-Linear Mechanics, 2019, vol. 110, pp. 26-32. https://doi.org/10.1016/j.ijnonlinmec.2019.01.001
  36. Li J., Zhang Y. Solitary wave and chaotic behavior of traveling wave solutions for the coupled KdV equations, Applied Mathematics and Computation, 2011, vol. 218, no. 5, pp. 1794-1797. https://doi.org/10.1016/j.amc.2011.06.063
  37. Borisov A.V., Mamaev I.S. Rigid body dynamics, De Gruyter Studies in Mathematical Physics, vol. 52, Berlin-Boston: Higher Education Press and Walter de Gruyter GmbH, 2018. https://doi.org/10.1515/9783110544442
  38. Holmes P.J. Averaging and chaotic motions in forced oscillations, SIAM Journal on Applied Mathematics, 1980, vol. 38, no. 1, pp. 65-80. https://doi.org/10.1137/0138005
  39. Kozlov V.V. Integrability and non-integrability in Hamiltonian mechanics, Russian Mathematical Surveys, 1983, vol. 38, no. 1, pp. 1-76. https://doi.org/10.1070/RM1983v038n01ABEH003330
  40. Kuznetsov S.P. Dinamicheskii chaos (Dynamical chaos), Moscow: Fizmatlit, 2001.
  41. Loskutov A.Y., Dzhanoev A.R. Suppression of chaos in the vicinity of a separatrix, Journal of Experimental and Theoretical Physics, 2004, vol. 98, no. 5, pp. 1045-1053. https://doi.org/10.1134/1.1767574
  42. Borisov A.V., Mamaev I.S. Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems, Regular and Chaotic Dynamics, 2008, vol. 13, no. 5, pp. 443-490. https://doi.org/10.1134/S1560354708050079
Full text
<< Previous article
Next article >>