phone +7 (3412) 91 60 92

Archive of Issues

Russia Moscow
Section Mechanics
Title On evolution of the planet's obliquity in a non-resonant planetary system
Author(-s) Krasil’nikov P.S.a, Podvigina O.M.b
Affiliations Moscow Aviation Institutea, Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciencesb
Abstract We investigate the evolution of the obliquity of a planet in the gravitational field of a star and other planets comprising a planetary system. The planet is assumed to be an axially symmetric rigid body ($A=B$). This planet and other planets move around the star along Keplerian ellipses with frequencies $\omega$ and $\omega_2,\ldots,\omega_N$, respectively, where $N$ is the number of celestial bodies (material points) affecting the planet. We derive Hamiltonian for the problem in the Depri-Andoyer variables in the satellite approximation. The Hamiltonian is averaged over the fast variables of the rotational and orbital motions, assuming that the motions are not resonant. The averaged Hamiltonian involves, in addition to the classic parameters, parameters $D_i$, that can be considered as functionals on the family of orbits of celestial bodies comprising the planetary system. The averaged Hamiltonian admits separation of variables, which implies the existence of three first integrals in involution. Regarding the gravitational torques of the other planets as small perturbations, we obtain from the energy integral of the averaged equations explicit approximate expressions for obliquity of the planet and its perturbed period of precession. We investigate numerically the amplitude of oscillations of the planet's obliquity and it's perturbed period of precession for a planetary system involving a star, the planet itself and another massive planet (similar to Jupiter), whose orbits satisfy certain symmetry conditions and orbital planes intersect at angle $\gamma$.
Keywords planet's rotation, planetary system, averaged equations, planet’s obliquity, precession period
UDC 521.92, 517.928.7
MSC 70F15, 70K65
DOI 10.20537/vm180408
Received 9 June 2018
Language Russian
Citation Krasil’nikov P.S., Podvigina O.M. On evolution of the planet's obliquity in a non-resonant planetary system, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2018, vol. 28, issue 4, pp. 549-564.
  1. Drysdale R.N., Hellstrom J.C., Zanchetta G., Fallick A.E., Sánchez Goñi M.F., Couchoud I., McDonald J., Maas R., Lohmann G., Isola I. Evidence for obliquity forcing of glacial termination. II, Science, 2009, vol. 325, no. 5947, pp. 1527-1531. DOI: 10.1126/science.1170371
  2. Dressing C.D., Spiegel D.S., Scharf C.A., Menou K., Raymond S.N. Habitable climates: the influence of eccentricity, The Astrophysical Journal, 2010, vol. 721, no. 2, pp. 1295-1307. DOI: 10.1088/0004-637X/721/2/1295
  3. Williams D.M., Kasting J.F. Habitable planets with high obliquities, Icarus, 1997, vol. 129, no. 1, pp. 254-267. DOI: 10.1006/icar.1997.5759
  4. Laskar J., Joutel F., Boudin F. Orbital, precessional, and insolation quantities for the Earth from $-20$ Myr to $+10$ Myr, Astronomy and Astrophysics, 1993, vol. 270, nos. 1-2, pp. 522-533.
  5. Laskar J., Robutel P. The chaotic obliquity of the planets, Nature, 1993, vol. 361, no. 6413, pp. 608-612. DOI: 10.1038/361608a0
  6. Laskar J., Joutel F., Robutel P. Stabilization the Earth's obliquity by the Moon, Nature, 1993, vol. 361, no. 6413, pp. 615-617. DOI: 10.1038/361615a0
  7. Spiegel D.S., Raymond S.N., Dressing C.D., Scharf C.A., Mitchell J.L. Generalized Milankovitch cycles and longterm climatic habitability, The Astrophysical Journal, 2010, vol. 721, no. 2, pp. 1308-1318. DOI: 10.1088/0004-637X/721/2/1308
  8. Heller R., Leconte J., Barnes R. Tidal obliquity evolution of potentially habitable planets, Astronomy and Astrophysics, 2011, vol. 528, A27, 16 p. DOI: 10.1051/0004-6361/201015809
  9. Ward W.R., Hamilton D.P. Tilting Saturn. I. Analytic Model, The Astronomical Journal, 2004, vol. 128, no. 5, pp. 2501-2509. DOI: 10.1086/424533
  10. Ward W.R., Hamilton D.P. Tilting Saturn. II. Numerical Model, The Astronomical Journal, 2004, vol. 128, no. 5, pp. 2510-2517. DOI: 10.1086/424534
  11. Krasil'nikov P.S., Amelin R.N. On the precession of Saturn, Cosmic Research, 2018, vol. 56, no. 4, pp. 306-316. DOI: 10.1134/S0010952518040019
  12. Krasil'nikov P.S., Zakharova E.E. Non-resonant rotation of a satellite relative to the center of mass on a quasi-periodic orbit in the restricted $N$ body problem, Kosmicheskie Issledovaniya, 1993, vol. 31, no. 6, pp. 11-21 (in Russian).
  13. Beletskii V.V. The motion of an artificial Earth satellite relative to the center of mass, Iskusstvennye Sputniki Zemli (Artificial Earth Satellites), Мoscow: USSR Academy of Sciences, 1958, issue 1, pp. 25-43 (in Russian).
  14. Routh E.J. The advanced part of a treatise on the dynamics of a system of rigid bodies, Cambridge: Cambridge University Press, 2013. DOI: 10.1017/cbo9781139237284
  15. Gray A. A treatise on gyrostatics and rotational motion. Theory and application. London: Macmillan and Co, 1918, 530 p.
  16. Krasil'nikov P.S. The non-linear oscillations of a pendulum of variable length on a vibrating base, Journal of Applied Mathematics and Mechanics, 2012, vol. 76, no. 1, pp. 25-35. DOI: 10.1016/j.jappmathmech.2012.03.003
Full text
<< Previous article
Next article >>