phone +7 (3412) 91 60 92

Archive of Issues

Russia Izhevsk
Section Mathematics
Title Asymptotics of the Schrödinger operator levels for a crystal film with a nonlocal potential
Author(-s) Smetanina M.S.a
Affiliations Udmurt State Universitya
Abstract We consider a three-dimensional Schrödinger operator for a crystal film with a nonlocal potential, which is a sum of an operator of multiplication by a function, and an operator of rank two (“separable potential”) of the form $V=W (x) +\lambda _1(\cdot,\phi _1)\phi _1+\lambda _2(\cdot,\phi _2)\phi _2 $. Here the function $W(x)$ decreases exponentially in the variable $x_3$, the functions $\phi _1(x)$, $\phi _2(x)$ are linearly independent, of Bloch type in the variables $x_1,\,x_2$ and exponentially decreasing in the variable $x_3$. Potentials of this type appear in the pseudopotential theory. A level of the Schrödinger operator is its eigenvalue or resonance. The existence and uniqueness of the level of this operator near zero is proved, and its asymptotics is obtained.
Keywords Schrödinger equation, nonlocal potential, eigenvalues, resonances, asymptotics
UDC 517.958, 530.145.61
MSC 35Q40, 35J10, 35P20
DOI 10.20537/vm180403
Received 30 August 2018
Language Russian
Citation Smetanina M.S. Asymptotics of the Schrödinger operator levels for a crystal film with a nonlocal potential, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2018, vol. 28, issue 4, pp. 462-473.
  1. Reed M., Simon B. Methods of modern mathematical physics. IV: Analysis of operators, New York: Academic Press, 1978.
  2. Mera H., Pedersen T.G., Nikolić B.K. Nonperturbative quantum physics from low-order perturbation theory, Physical Review Letters, 2015, vol. 115, issue 14, 143001. DOI: 10.1103/PhysRevLett.115.143001
  3. Cornean H.D., Jensen A., Nenciu G. Metastable states when the Fermi Golden Rule constant vanishes, Communications in Mathematical Physics, 2015, vol. 334, issue 3, pp. 1189-1218. DOI: 10.1007/s00220-014-2127-5
  4. Bourget O., Cortés V.H., del Río R., Fernández C. Resonances under rank one perturbations, Journal of Mathematical Physics, 2017, vol. 58, no. 9, 093502. DOI: 10.1063/1.4989882
  5. Hinchcliffe J., Strauss M. Spectral enclosure and superconvergence for eigenvalues in gaps, Integral Equations and Operator Theory, 2016, vol. 84, issue 1, pp. 1-32. DOI: 10.1007/s00020-015-2247-0
  6. Landau L.D., Lifshits E.M. Kvantovaya mekhanika. Nerelyativistskaya teoriya (Quantum mechanics. Non-relativistic theory), Moscow: Fizmatgiz, 1963, 702 p.
  7. Faddeev L.D., Yakubovskii O.A. Lektsii po kvantovoi mekhanike dlya studentov-matematikov (Lectures on quantum mechanics for mathematics students), Leningrad: Leningrad State University, 1980, 200 p.
  8. Heine V., Cohen M., Weaire D. The pseudopotential concept, New York: Academic Press, 1970, 557 p. Translated under the title Teoriya psevdopotentsiala, Moscow: Mir, 1973, 558 p.
  9. Albeverio S., Gesztesy F., Hoegh-Krohn R., Holden H. Solvable models in quantum mechanics, New York: Springer, 1988, 452 p. Translated under the title Reshaemye modeli v kvantovoi mekhanike, Moscow: Mir, 1991, 568 p.
  10. Korobeinikov A.A., Pletnikova N.I. The computation of the energy levels and electron states of resonances in the case of a crystal film, Vestnik Izhevskogo Gosudarstvennogo Tekhnicheskogo Universiteta, 2006, no. 4, pp. 63-68 (in Russian).
  11. Gadyl'shin R.R. Local perturbations of the Schrödinger operator on the axis, Theoretical and Mathematical Physics, 2002, vol. 132, no. 1, pp. 976-982. DOI: 10.1023/A:1019615509634
  12. Gadyl'shin R.R. Local perturbations of the Schrödinger operator on the plane, Theoretical and Mathematical Physics, 2004, vol. 138, no. 1, pp. 33-44. DOI: 10.1023/B:TAMP.0000010631.40891.f0
  13. Gadyl'shin R.R., Khusnullin I.Kh. Schrödinger operator on the axis with potentials depending on two parameters, St. Petersburg Mathematical Journal, 2011, vol. 22, no. 6, pp. 883-894. DOI: 10.1090/S1061-0022-2011-01174-4
  14. Colom R., McPhedran R., Stout B., Bonod N. Modal expansion of the scattered field: Causality, nondivergence, and nonresonant contribution, Physical Review B, 2018, vol. 98, issue 8, 085418. DOI: 10.1103/PhysRevB.98.085418
  15. Fang Z., Shi M., Guo J.-Y., Niu Z.-M., Liang H., Zhang S.-S. Probing resonances in the Dirac equation with quadrupole-deformed potentials with the complex momentum representation method, Physical Review C, 2017, vol. 95, issue 2, 024311. DOI: 10.1103/PhysRevC.95.024311
  16. Morozova L.E. The scattering problem for a discrete Schröodinger operator with the “resonant” potential on the graph, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2013, issue 1, pp. 29-34 (in Russian). DOI: 10.20537/vm130104
  17. Smetanina M.S. Levels of the Schrödinger operator with a perturbed non-local potential, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2006, issue 1 (35), pp. 98-104 (in Russian).
  18. Ziman J. Principles of the theory of solids, Cambridge: Cambridge University Press, 1972, 435 p. Translated under the title Printsipy tverdogo tela, Moscow: Mir, 1974, 472 p.
  19. Skriganov M.M. Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators, Proceedings of the Steklov Institute of Mathematics, 1987, vol. 171, pp. 1-121.
  20. Demkov Yu.N., Ostrovskii V.N. Metod potentsialov nulevogo radiusa v atomnoi fizike (Method of zero-radius potentials in atomic physics), Leningrad: Leningrad State University, 1975, 240 p.
  21. Chuburin Yu.P. On the scattering on a crystal film: Spectrum and asymptotics of the Schrödinger equation wave functions, Preprint of the Physical-Technical Institute, Sverdlovsk: Ural Scientific Center, USSR Academy of Sciences, 1985, 43 p. (In Russian).
  22. Chuburin Yu.P. Scattering for the Schrödinger operator in the case of a crystal film, Theor. Math. Phys., 1987, vol. 72, issue 1, pp. 764-772. DOI: 10.1007/BF01035703
  23. Smetanina M.S. Investigation of the Sсhrödinger equation with nonlocal potential, Cand. Sci. (Phys.-Math.) Dissertation, Belgorod, 2009, 109 p. (In Russian).
  24. Smetanina M.S. On the levels of the Schrödinger operator with nonlocal potential, Izv. Inst. Mat. Inform. Udmurt. Gos. Univ., 2002, issue 3 (26), pp. 99-114 (in Russian).
  25. Chuburin Yu.P. Schrödinger operator eigenvalue (resonance) on a zone boundary, Theor. Math. Phys., 2001, vol. 126, issue 2, pp. 161-168. DOI: 10.1023/A:1005287525569
  26. Richtmyer R. Principles of advanced mathematical physics. Vol. 1, New York: Springer, 1978, 424 p. Translated under the title Printsipy sovremennoi matematicheskoi fiziki, Moscow: Mir, 1982, 486 p.
Full text
<< Previous article
Next article >>