Abstract

In this paper, the method of embedding is used to construct the classification of twodimensional phenomenologically symmetric geometries of two sets (PS GTS) of rank $(3,2)$ from the previously known additive twodimensional PS GTS of rank $(2,2)$ defined by a pair of functions $g^1=x+\xi$ and $g^2 = y+\eta$. The essence of this method consists in finding the functions defining the PS GTS of rank $(3,2)$ with respect to the functions $g^1=x+\xi$ and $g^2 = y+\eta$. In solving this problem, we use the fact that the twodimensional PS GTS of rank $(3,2)$ admit groups of transformations of dimension 4, and the twodimensional PS GTS of rank $(2,2)$ is of dimension 2. It follows that the components of the operators of the Lie algebra of the transformation group of the twodimensional PS GTS of rank $(3,2)$ are solutions of a system of eight linear differential equations of the first order in two variables. Investigating this system of equations, we arrive at possible expressions for systems of operators. Then, from the systems of operators, we select the operators that form Lie algebras. Then, applying the exponential mapping, we recover the actions of the Lie groups from the Lie algebras found. It is precisely these actions that specify the twodimensional PS GTS of rank $(3,2)$.

Citation

Kyrov V.A., Mikhailichenko G.G. Embedding of an additive twodimensional phenomenologically symmetric geometry of two sets of rank (2,2) into twodimensional phenomenologically symmetric geometries of two sets of rank (3,2), Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2018, vol. 28, issue 3, pp. 305327.

References

 Mikhailichenko G.G. Matematicheskie osnovy i rezul'taty teorii fizicheskikh struktur (The mathemetical basics and results of the theory of physical structures), GornoAltaisk: GornoAltaisk State University, 2016, 297 p.
 Kyrov V.A., Mikhailichenko G.G. An analytic method for the embedding of the Euclidean and pseudoEuclidean geometries, Trudy Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 2017, vol. 23, no. 2, pp. 167181 (in Russian). DOI: 10.21538/013448892017232167181
 Kyrov V.A., Mikhailichenko G.G. An analytic method for the embedding of the symplectic geometry, Siberian Electronic Mathematical Reports, 2017, vol. 14, pp. 657672 (in Russian). DOI: 10.17377/semi.2017.14.057
 Kyrov V.A. Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 2016, vol. 26, issue 3, pp. 312323 (in Russian). DOI: 10.20537/vm160302
 Kyrov V.A. Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,M)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,M)$, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 2017, vol. 27, issue 1, pp. 4253 (in Russian). DOI: 10.20537/vm170104
 Simonov A.A. Pseudomatrix groups and physical structures, Siberian Mathematical Journal, 2015, vol. 56, no. 1, pp. 177190. DOI: 10.1134/S0037446615010176
 Mikhailichenko G.G. Bimetric physical structures of rank $(n+1,2)$, Siberian Mathematical Journal, 1993, vol. 34, no. 3, pp. 513522. DOI: 10.1007/BF00971227
 Kyrov V.A. Phenomenologically symmetric local Lie groups of transformations of the space $R$^{$s$} , Russian Mathematics, 2009, vol. 53, no. 7, pp. 716. DOI: 10.3103/S1066369X09070020
 Bredon G. Introduction of compact transformation groups, New YorkLondon: Academic Press, 1972. xiii+459 p.
 Kostrikin A.I. Vvedenie v algebru (Introduction to Algebra), Moscow: Nauka, 1977, 496 p.
 El'sgol'ts L.E. Differentsial'nye uravneniya i variatsionnoe ischislenie (Differential equations and the calculus of variations), Moscow: Nauka, 1969, 424 p.
 Ovsyannikov L.V. Gruppovoi analiz differentsial'nykh uravnenii (Group analysis of differential equations), Moscow: Nauka, 1978, 400 p.
 Lie S., Engel F. Theorie der transformationsgruppen. Bd. 3, Leipzig: B.G. Teubner, 1893. 324 p.
