phone +7 (3412) 91 60 92

Archive of Issues

Russia Moscow
Section Mechanics
Title Servopneumatic actuator of a robot with compensation for the mutual influence of movements of the degrees of mobility
Author(-s) Ivlev V.I.a, Misyurin S.Yu.ab, Nosova N.Yu.ab
Affiliations Mechanical Engineering Research Institute, Russian Academy of Sciencesa, National Research Nuclear University MEPhIb
Abstract This paper presents the results of investigation of the working capacity of a servopneumatic actuator with a reference model in the control system. This control scheme is used to compensate for the mutual influence of movements of various degrees of mobility in industrial robots in the form of force and parametric perturbations. Mathematical modeling and a full-scale test of the servopneumatic actuator with a reference model in the control system are carried out. The mathematical model contains thermodynamical pressure and temperature differential equations of compressed air state in pneumatic cylinder chambers; logical relationships determining the conditions for connection of the chambers with a feed line or atmosphere; equations describing the dynamics of the servovalve; equations of mechanical force balance on the cylinder shaft and relationships describing the control system. The results obtained show a satisfactory agreement between the calculated and experimental data and the possibility of partial compensation for the influence of the force perturbations on the motion of the servopneumatic actuator. Based on the linearized mathematical model, the smoothing coefficient was calculated with respect to external force disturbances. The control system with a reference model in the control loop makes it possible to increase the noise immunity by 23 % in comparison with the conventional control system.
Keywords servopneumatic actuator, proportional pneumatic valve, reference model
UDC 621.525
MSC 00A06
DOI 10.20537/vm180209
Received 28 May 2018
Language Russian
Citation Ivlev V.I., Misyurin S.Yu., Nosova N.Yu. Servopneumatic actuator of a robot with compensation for the mutual influence of movements of the degrees of mobility, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2018, vol. 28, issue 2, pp. 231-239.
  1. Rahmat M.F., Sunar N.H., Salim S.N.S., Abidin M.S.Z., Fauzi A.A.M., Ismail Z.H. Review on modeling and controller design in pneumatic actuator control system, Intern. Journal on Smart Sensing and Intelligent Systems, 2011, vol. 4, no. 4, pp. 630-661.
  2. Andrikopoulos G., Nikolakopoulos G., Manesis S. Adaptive internal model control scheme for pneumatic artificial muscle, Proc. European Control Conference, Zurich, Switzerland, 2013, pp. 772-777. DOI: 10.23919/ECC.2013.6669421
  3. Hošovský A., Novák-Marcinčin J., Piteľ J., Boržíková J., Žibek K. Model-based evolution of a fast hybrid fuzzy adaptive controller for a pneumatic muscle actuator, International Journal of Advanced Robotic Systems, 2012, vol. 9, no. 2. DOI: 10.5772/50347
  4. Gong Q. Control of pneumatic servo system based on neural network PID algorithm, Applied Mechanics and Materials, 2014, vol. 457-458, pp. 1344-1347. DOI: 10.4028/
  5. Rao Z., Bone G.M. Nonlinear modeling and control of servo-pneumatic actuators, IEEE Transaction on Control System Technology, 2008, vol. 16, issue 3, pp. 562-569. DOI: 10.1109/TCST.2007.912127
  6. Gerts E.V. Dinamika pnevmaticheskikh sistem mashin (Dynamics of pneumatic systems of machines), Moscow: Mashinostroenie, 1985, 256 p.
  7. Festo Corporation. Proportional directional control valves MPYE. 2017. 10 p.
  8. Karpenko M., Sepehri N. Design and experimental evaluation of a nonlinear position controller for a pneumatic actuator with friction, Proceedings of the 2004 American Control Conference, 2004, Boston, Massachusetts, USA, pp. 5078-5083. DOI: 10.23919/ACC.2004.1384656
  9. Ali H., Noor S., Bashi S.M., Marhaban M.H. Mathematical and intelligent modeling of electropneumatic servo actuator systems, Australian Journal of Basic and Applied Science, 2009, vol. 3, issue 4, pp. 3662-3670.
  10. Kirkegaard K., Shamban W. Non-labricated pneumatic sealing systems, Preprint. 9 Aachener Fluidtechnisches Kolloquium, 1990, Aachen, pp. 77-98.
  11. Schindele D., Aschemann H. Adaptive friction compensation based on the LuGre model for a pneumatic rodless cylinder, 2009 35th Annual Conference of IEEE Industrial Electronics, 2009, Porto, Portugal, pp. 1432-1437. DOI: 10.1109/IECON.2009.5414726
  12. Trentini R., Campos A., Silveira A. da S., Espindola G. Identification of friction effects in a linear positioning servo pneumatic system, Ciência & Engenharia, 2013, vol. 22, no. 1, pp. 97-101. DOI: 10.14393/19834071.2013.22402
  13. Beater P. Pneumatic drives. System design, modelling and control, Springer-Verlag Berlin Heidelberg, 2007, XIV, 324 p. DOI: 10.1007/978-3-540-69471-7
  14. Wang J., Kotta Ü., Ke J. Tracking control of nonlinear pneumatic actuator systems using static state feedback linearization of the input-output map, Proc. Estonian Acad. Sci. Phys. Math., 2007, vol. 56, issue 1, pp. 47-66.
  15. Sveshnikov A.A. Prikladnye metody teorii sluchainykh funktsii (Applied methods of the theory of random function), Leningrad: Sudprogiz, 1961, 243 p.
Full text
<< Previous article
Next article >>