References

 Lie S., Scheffers G. Simmetrii differentsial'nykh uravnenii. Tom 1. Lektsii o differentsial'nykh uravneniyakh s izvestnymi infinitezimal'nymi preobrazovaniyami (Symmetries of differential equations. Vol. 1. Lectures on differential equations with known infinitesimal transformations), MoscowIzhevsk: Regular and Chaotic Dynamics, 2011, 704 p.
 Ovsiannikov L.V. Group analysis of differential equations, Academic Press, 1982, 432 p. DOI: 10.1016/C20130074701 Original Russian text published in Ovsyannikov L.V. Gruppovoi analiz differentsial'nykh uravnenii, Moscow: Nauka, 1978, 399 p.
 Olver P.J. Applications of Lie groups to differential equations, New York: Springer, 1986, 513 p. DOI: 10.1007/9781468402742 Translated under the title Prilozheniya grupp Li k differentsial'nym uravneniyam, Moscow: Mir, 1989, 639 p.
 Stephani H. Differential equations. Their solution using symmetries, Cambridge: Cambridge University Press, 1989, XII, 260 p.
 Bluman G.W., Kumei S. Symmetries and differential equations, Springer, New York, 1989, 412 p. DOI: 10.1007/9781475743074
 Ibragimov N.Kh. Group analysis of ordinary differential equations and the invariance principle in mathematical physics (for the 150th anniversary of Sophus Lie), Russian Mathematical Surveys, 1992, vol. 47, no. 4, pp. 89156. DOI: 10.1070/RM1992v047n04ABEH000916
 Wafo Soh C., Mahomed F.M. Canonical forms for systems of two secondorder ordinary differential equations, Journal of Physics A: Mathematical and General, 2001, vol. 34, no. 13, pp. 28832911. DOI: 10.1088/03054470/34/13/316
 Ayub M., Khan M., Mahomed F.M. Secondorder systems of ODEs admitting threedimensional Lie algebras and integrability, Journal of Applied Mathematics, 2013, vol. 2013, article ID 147921, 15 p. DOI: 10.1155/2013/147921
 Wafo Soh C., Mahomed F.M. Reduction of order for systems of ordinary differential equations, Journal of Nonlinear Mathematical Physics, 2004, vol. 11, issue 1, pp. 1320. DOI: 10.2991/jnmp.2004.11.1.3
 Gainetdinova A.A., Gazizov R.K. Integrability of systems of two secondorder ordinary differential equations admitting fourdimensional Lie algebras, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2017, vol. 473, issue 2197, 20160461. DOI: 10.1098/rspa.2016.0461
 Gazizov R.K., Gainetdinova A.A. Invariant differentiation operator and its application for integrating systems of ordinary differential equations, Ufa Mathematical Journal, 2017, vol. 9, no. 4, pp. 1221. DOI: 10.13108/20179412
 Baikov V.A., Gazizov R.K., Ibragimov N.H. Approximate groups of transformations, Differential Equations, 1993, vol. 29, issue 10, pp. 14871504.
 Fushchich W.I., Shtelen W.M. On approximate symmetry and approximate solutions of the nonlinear wave equation with a small parameter, Journal of Physics A: Mathematical and General, 1989, vol. 22, no. 18, pp. L887L890. DOI: 10.1088/03054470/22/18/007
 Bagderina Yu.Yu. Solution of ordinary differential equation with a large Lie symmetry group, Nonlinear Dynamics, 2002, vol. 30, issue 3, pp. 287294. DOI: 10.1023/A:1020568028406
 Gazizov R.K., Ibragimov N.H., Lukashchuk V.O. Integration of ordinary differential equation with a small parameter via approximate symmetries: Reduction of approximate symmetry algebra to a canonical form, Lobachevskii Journal of Mathematics, 2010, vol. 31, no. 2, pp. 141151. DOI: 10.1134/S1995080210020058
 Gazizov R.K. Representation of general invariants for approximate transformation groups, Journal of Mathematical Analysis and Applications, 1997, vol. 213, issue 1, pp. 202228. DOI: 10.1006/jmaa.1997.5525
 Bagderina Yu. Invariants of multiparameter approximate transformation groups, Journal of Mathematical Analysis and Applications, 2003, vol. 281, issue 2, pp. 539551. DOI: 10.1016/S0022247X(03)001422
 Bagderina Yu.Yu., Gazizov R.K. Invariant representation and symmetry reduction for differential equations with a small parameter, Communications in Nonlinear Science and Numerical Simulation, 2004, vol. 9, issue 1, pp. 311. DOI: 10.1016/S10075704(03)000108
 Bagderina Yu.Yu., Gazizov R.K. Approximately invariant solutions of differential equations with a small parameter, Differential Equations, 2005, vol. 41, no. 3, pp. 364372. DOI: 10.1007/s1062500501684
 Gazizov R.K., Lukashchuk V.O. Classification of nonsimilar approximate Lie algebras with two essential symmetries on the plane, Proceedings of the Fifth AllRussian Scientific Conference with international participation (2931 May 2008). Part 3, Matem. Mod. Kraev. Zadachi, Samara State Technical Univ., Samara, 2008, pp. 6264 (in Russian). http://mi.mathnet.ru/eng/mmkz1111
 Gyunter N.M. Integrirovanie uravnenii pervogo poryadka v chastnykh proizvodnykh (Integration of firstorder partial differential equations), LeningradMoscow: ONTI, 1934, 359 p.
