Abstract

We consider the model of population subject to a craft, in which sizes of the trade preparations are random variables. In the absence of operation the population development is described by the logistic equation $\dot x = (abx) x,$ where coefficients $a $ and $b $ are indicators of growth of population and intraspecific competition respectively, and in time moments $ \tau_k=kd$ some random share of a resource $\omega_k,$ $k=1,2, \ldots,$ is taken from population. We assume that there is a possibility to exert influence on the process of resource gathering so that to stop preparation in the case when its share becomes big enough (more than some value $u_k\in (0,1)$ in the moment $\tau_k$) in order to keep the biggest possible rest of a resource and to increase the size of next gathering. We investigate the problem of an optimum way to control population $ \bar u = (u_1, \dots, u_k, \dots)$ at which the extracted resource is constantly renewed and the value of average time profit can be lower estimated by the greatest number whenever possible. It is shown that at insufficient restriction of a share of the extracted resource the value of average time profit can be equaled to zero for all or almost all values of random parameters. We also consider the following problem: let a value $u\in (0,1)$ be given, by which we limit a random share of a resource $ \omega_k, $ extracted from population in time moments $\tau_k,$ $k=1,2, \ldots .$ It is required to find minimum time between neighboring withdrawals, necessary for resource renewal, in order to make it possible to do extractions until the share of the taken resource does not reach the value $u.$

References

 Bainov D.D. Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken away from the population, Applied Mathematics and Computation, 1990, vol. 39, issue 1, pp. 3748. DOI: 10.1016/00963003(90)90120r
 Dykhta V.A., Samsonyuk O.N. Optimal'noe impul'snoe upravlenie s prilozheniyami (Optimal impulse control with applications), Moscow: Fizmatlit, 2000, 256 p.
 Belyakov A.O., Davydov A.A., Veliov V.M. Optimal cyclic exploitation of renewable resources, Journal of Dynamical and Control Systems, 2015, vol. 21, issue 3, pp. 475494. DOI: 10.1007/s108830159271x
 Belyakov A.O., Davydov A.A. Efficiency optimization for the cyclic use of a renewable resourse, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 2016, vol. 22, no. 2, pp. 3846 (in Russian). DOI: 10.21538/0134488920162223846
 Rodina L.I. On the invariant sets of control systems with random coefficients, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2014, issue 4, pp. 109121 (in Russian). DOI: 10.20537/vm140409
 Rodina L.I., Tyuteev I.I. About asymptotical properties of solutions of difference equations with random parameters, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2016, vol. 26, issue 1, pp. 7986 (in Russian). DOI: 10.20537/vm160107
 Rodina L.I. On repelling cycles and chaotic solutions of difference equations with random parameters, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 2016, vol. 22, no. 2, pp. 227235 (in Russian). DOI: 10.21538/013448892016222227235
 Reed W.J. Optimal escapement levels in stochastic and deterministic harvesting models, Journal of Environmental Economics and Management, 1979, vol. 6, pp. 350363. DOI: 10.1016/00950696(79)900147
 Kapaun U., Quaas M.F. Does the optimal size of a fish stock increase with environmental uncertainties? Environmental and Resource Economics, 2013, vol. 54, issue 2, pp. 293310. DOI: 10.1007/s106400129606y
 Clark C., Kirkwood G. On uncertain renewable resourse stocks: Optimal harvest policies and the value of stock surveys, Journal of Environmental Economics and Management, 1986, vol. 13, issue 3, pp. 235244. DOI: 10.1016/00950696(86)900240
 Reed W.J., Clarke H.R. Harvest decisions and assert valuation for biological resources exhibiting sizedependent stochastic growth, International Economic Review, 1990, vol. 31, pp. 147169. DOI: 10.2307/2526634
 Weitzman M.L. Landing fees vs harvest quotas with uncertain fish stocks, Journal of Environmental Economics and Management, 2002, vol. 43, pp. 325338. DOI: 10.1006/jeem.2000.1181
 Shiryaev A.N. Veroyatnost' (Probability), Moscow: Nauka, 1989, 580 p.
 Feller W. An introduction to probability theory and its applications, Vol. 1, Wiley, 1971. Translated under the title Vvedenie v teoriyu veroyatnostei i ee prilozheniya, vol. 1, Moscow: Mir, 1984, 528 p.
