phone +7 (3412) 91 60 92

Archive of Issues


Russia Ufa
Year
2017
Volume
27
Issue
4
Pages
515-531
<<
>>
Section Mathematics
Title Approximation of ordinary fractional differential equations by differential equations with a small parameter
Author(-s) Lukashchuk S.Yu.a
Affiliations Ufa State Aviation Technical Universitya
Abstract An approach to approximation of ordinary fractional differential equations by integer-order differential equations is proposed. It is assumed that the order of fractional differentiation is close to integer. Perturbation expansions for the Riemann-Liouville and Caputo fractional derivatives are derived in terms of a suitable small parameter extracted from the order of fractional differentiation. The first-order term of these expansions is represented by series depending on integer-order derivatives of all integer orders. The expansions obtained permit one to approximate ordinary fractional differential equations, involving such types of fractional derivatives, by integer-order differential equations with a small parameter. It is proved that, for fractional differential equations belonging to a certain class, corresponding approximate equations contain only a finite number of integer-order derivatives. Approximate solutions to such equations can be obtained using well-known perturbation techniques. The proposed approach is illustrated by several examples.
Keywords ordinary fractional differential equation, small parameter, approximation, approximate solution
UDC 517.928
MSC 34A08, 34E10
DOI 10.20537/vm170403
Received 21 August 2017
Language Russian
Citation Lukashchuk S.Yu. Approximation of ordinary fractional differential equations by differential equations with a small parameter, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2017, vol. 27, issue 4, pp. 515-531.
References
  1. Samko S.G., Kilbas A.A., Marichev O.I. Fractional integrals and derivatives. Theory and applications, CRC Press, 1993, 1006 p. Original Russian text published in Samko S.G., Kilbas A.A., Marichev O.I. Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Minsk: Nauka i Tekhnika, 1987, 688 p.
  2. Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and applications of fractional differential equations, Amsterdam: Elsevier Science B.V., 2006, 539 p. DOI: 10.1016/s0304-0208(06)x8001-5
  3. Podlubny I. Fractional differential equations, San Diego: Academic Press, 1999, xxiv+340 p.
  4. Pskhu A.V. Uravneniya v chastnykh proizvodnykh drobnogo poryadka (Partial differential equations of fractional order), Moscow: Nauka, 2005, 199 p.
  5. Metzler R., Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamic approach, Physics Reports, 2000, vol. 339, issue 1, pp. 1-77. DOI: 10.1016/S0370-1573(00)00070-3
  6. Klages R., Radons G., Sokolov I.M. (Eds.) Anomalous transport: foundations and applications, Berlin: Wiley-VCH, 2008, xxiv+584 p. DOI: 10.1002/9783527622979
  7. Klafter J., Lim S.C., Metzler R. (Eds.) Fractional dynamics: recent advances, Singapore: World Scientific, 2011, 532 p. DOI: 10.1142/9789814340595
  8. Gazizov R.K., Kasatkin A.A., Lukashchuk S.Yu. Symmetry properties of fractional diffusion equations, Physica Scripta, 2009, vol. 2009, issue T136, 014016. DOI: 10.1088/0031-8949/2009/T136/014016
  9. Gazizov R.K., Kasatkin A.A., Lukashchuk S.Yu. Fractional differential equations: change of variables and nonlocal symmetries, Ufa Mathematical Journal, 2012, vol. 4, issue 4, pp. 54-67.
  10. Lukashchuk S.Yu., Makunin A.V. Group classification of nonlinear time-fractional diffusion equation with a source term, Applied Mathematics and Computation, 2015, vol. 257, pp. 335-343. DOI: 10.1016/j.amc.2014.11.087
  11. Ray S.S. Analytical solution for the space fractional diffsion equation by two-step Adomian decomposition method, Communications in Nonlinear Science and Numerical Simulation, 2009, vol. 14, no. 4, pp. 1295-1306. DOI: 10.1016/j.cnsns.2008.01.010
  12. Safari M., Danesh M. Application of Adomian's decomposition method for the analytical solution of space fractional diffusion equation, Advances in Pure Mathematics, 2011, vol. 1, no. 6, pp. 345-350. DOI: 10.4236/apm.2011.16062
  13. He J.-H. Homotopy perturbation technique, Computer Methods in Applied Mechanics and Engineering, 1999, vol. 178, issues 3-4, pp. 257-262. DOI: 10.1016/S0045-7825(99)00018-3
  14. Rajeev, Kushwaha M.S. Homotopy perturbation method for a limit case Stefan problem governed by fractional diffusion equation, Applied Mathematical Modelling, 2013, vol. 37, issue 5, pp. 3589-3599. DOI: 10.1016/j.apm.2012.07.047
  15. Odibat Z., Momani S. Applications of variational iteration and homotopy perturbation methods to fractional evolution equations, Topological Methods in Nonlinear Analysis, 2008, vol. 31, no. 2, pp. 227-234.
  16. He J.-H. Approximate analytical solution for seepage flow with fractional derivatives in porous media, Computer Methods in Applied Mechanics and Engineering, 1998, vol. 167, issues 1-2, pp. 57-68. DOI: 10.1016/S0045-7825(98)00108-X
  17. Guo S., Mei L., Li Y. Fractional variational homotopy perturbation iteration method and its application to a fractional diffusion equation, Applied Mathematics and Computation, 2013, vol. 219, issue 11, pp. 5909-5917. DOI: 10.1016/j.amc.2012.12.003
  18. Pandey R.K., Singh O.P., Baranwal V.K., Tripathi M.P. An analytic solution for the space-time fractional advection-dispersion equation using the optimal homotopy asymptotic method, Computer Physics Communications, 2012, vol. 183, issue 10, pp. 2098-2106. DOI: 10.1016/j.cpc.2012.05.012
  19. Tarasov V.E., Zaslavsky G.M. Dynamics with low-level fractionality, Physica A: Statistical Mechanics and its Applications, 2006, vol. 368, issue 2, pp. 399-415. DOI: 10.1016/j.physa.2005.12.015
  20. Tofighi A., Golestani A. A perturbative study of fractional relaxation phenomena, Physica A: Statistical Mechanics and its Applications, 2008, vol. 387, issues 8-9, pp. 1807-1817. DOI: 10.1016/j.physa.2007.11.046
  21. Tofighi A. An especial fractional oscillator, International Journal of Statistical Mechanics, 2013, vol. 2013, article ID 175273, 5 p. DOI: 10.1155/2013/175273
  22. Lukashchuk S.Yu. An approximate group classification of a perturbed subdiffusion equation, Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2016, vol. 20, no. 4, pp. 603-619 (in Russian). DOI: 10.14498/vsgtu1520
  23. Nayfeh A.H. Perturbation methods, Weinheim: Wiley-VCH Verlag, 2000, 437 p. Translated under the title Metody vozhmushchenii, Moscow: Mir, 1976, 456 p.
  24. Baĭkov V.A., Gazizov R.K., Ibragimov N.Kh. Approximate symmetries, Mathematics of the USSR - Sbornik, 1989, vol. 64, no. 2, pp. 427-441. DOI: 10.1070/SM1989v064n02ABEH003318
  25. Baikov V.A., Gazizov R.K., Ibragimov N.Kh. Perturbation methods in group analysis, Journal of Soviet Mathematics, 1991, vol. 55, issue 1, pp. 1450-1490. DOI: 10.1007/BF01097534
  26. Dzhrbashyan M.M. Integral'nye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti (Integral transforms and representations of functions in the complex domain), Moscow, Nauka, 1966, 672 p.
  27. Abramowitz M., Stegun I.A. Handbook of mathematical functions, Washington: National Bureau of Standards, 1972, 1037 p. Translated under the title Spravochnik po spetsial'nym funktsiyam, Moscow: Nauka, 1979, 832 p.
Full text
<< Previous article
Next article >>