phone +7 (3412) 91 60 92

Archive of Issues

Russia Zelenograd
Section Computer science
Title Stability of gap soliton complexes in the nonlinear Schrödinger equation with periodic potential and repulsive nonlinearity
Author(-s) Kizin P.P.a
Affiliations National Research University of Electronic Technologya
Abstract The work is devoted to numerical investigation of stability of stationary localized modes (“gap solitons”) for the one-dimentional nonlinear Schrödinger equation (NLSE) with periodic potential and repulsive nonlinearity. Two classes of the modes are considered: a bound state of a pair of *in-phase* and *out-of-phase* fundamental gap solitons (FGSs) from the first bandgap separated by various numbers of empty potential wells. Using the standard framework of linear stability analysis, we computed the linear spectra for the gap solitons by means of the Fourier collocation method and the Evans function method. We found that the gap solitons of the first and second classes are exponentially unstable for odd and even numbers of separating periods of the potential, respectively. The real parts of unstable eigenvalues in corresponding spectra decay exponentially with the distance between FGSs. On the contrary, we observed that the modes of the first and second classes are either linearly stable or exhibit weak oscillatory instabilities if the number of empty potential wells separating FGSs is even and odd, respectively. In both cases, the oscillatory instabilities arise in some vicinity of upper bandgap edge. In order to check the linear stability results, we fulfilled numerical simulations for the time-dependent NLSE by means of a finite-difference scheme. As a result, all the considered exponentially unstable solutions have been deformed to long-lived pulsating formations whereas stable solutions conserved their shapes for a long time.
Keywords nonlinear Schrödinger equation, periodic potential, gap solitons, stability
UDC 519.6
MSC 35Q55, 35C08, 65L99, 65M06
DOI 10.20537/vm160412
Received 1 October 2016
Language English
Citation Kizin P.P. Stability of gap soliton complexes in the nonlinear Schrödinger equation with periodic potential and repulsive nonlinearity, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2016, vol. 26, issue 4, pp. 591-602.
  1. Akylas T.R., Hwang G., Yang J. From non-local gap solitary waves to bound states in periodic media, Proc. R. Soc. A, 2012, vol. 468, pp. 116-135. DOI: 10.1098/rspa.2011.0341
  2. Alfimov G.L., Avramenko A.I. Coding of nonlinear states for the Gross-Pitaevskii equation with periodic potential, Physica D: Nonlinear Phenomena, 2013, vol. 254, pp. 29-45. DOI: 10.1016/j.physd.2013.03.009
  3. Alfimov G.L., Kevrekidis P.G., Konotop V.V., Salerno M. Wannier functions analysis of the nonlinear Schrödinger equation with a periodic potential, Physical Review E, 2002, vol. 66, 046608, 6 p. DOI: 10.1103/PhysRevE.66.046608
  4. Alfimov G.L., Kizin P.P., Zezyulin D.A. Gap solitons for the repulsive Gross-Pitaevskii equation with periodic potential: coding and method for computation, 2016, arXiv: 1609.00657 [nlin.PS].
  5. Alfimov G.L., Konotop V.V., Salerno M. Matter solitons in Bose-Einstein condensates with optical lattices, Europhysics Letters, 2002, vol. 58, pp. 7-13. DOI: 10.1209/epl/i2002-00599-0
  6. Anderson M.H., Ensher J.R., Matthews M.R., Wieman C.E., Cornell E.A. Observation of Bose-Einstein condensation in a dilute atomic vapor, Science, 1995, vol. 269, pp. 198-201. DOI: 10.1126/science.269.5221.198
  7. Berezin F.A., Shubin M.A. The Schrödinger Equation, Kluwer, 1991. DOI: 10.1007/978-94-011-3154-4
  8. Bergé L. Self-focusing dynamics of nonlinear waves in media with parabolic-type inhomogeneities, Physics of Plasmas, 1997, vol. 4, 1227. DOI: 10.1063/1.872302
  9. Blank E., Dohnal T. Families of surface gap solitons and their stability via the numerical Evans function method, SIAM J. Appl. Dyn. Syst., 2011, vol. 10, pp. 667-706. DOI: 10.1137/090775324
  10. Bose S. Planck's law and the light quantum hypothesis, Journal of Astrophysics and Astronomy, 1994, vol. 15, pp. 3-7. DOI: 10.1007/BF03010400
  11. Bradley C.C., Sackett C.A., Tollett J.J., Hulet R.G. Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions, Physical Review Letters, 1995, vol. 75, pp. 1687-1690. DOI: 10.1103/PhysRevLett.75.1687
  12. Chen H.H., Liu C.S. Nonlinear wave and soliton propagation in media with arbitrary inhomogeneities, The Physics of Fluids, 1978, vol. 21, 377. DOI: 10.1063/1.862236
  13. Dalfovo F., Giorgini S., Pitaevskii L.P., Stringari S. Theory of Bose-Einstein condensation in trapped gases, Reviews of Modern Physics, 1999, vol. 71, pp. 463-512. DOI: 10.1103/RevModPhys.71.463
  14. Davis K.B., Mewes M.-O., Andrews M.R., Druten N.J., Durfee D.S., Kurn D.M., Ketterle W. Bose-Einstein condensation in a gas of sodium atoms, Physical Review Letters, 1995, vol. 75, pp. 3969-3973. DOI: 10.1103/PhysRevLett.75.3969
  15. Edwards M., Burnett K. Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms, Physical Review A, 1995, vol. 51, pp. 1382-1386. DOI: 10.1103/PhysRevA.51.1382
  16. Einstein A. Quantentheorie des einatomigen idealen Gases, Sitzungsber. Kgl. Preuss. Akad. Wiss., 1924.
  17. Fukuizumi R., Sacchetti A. Stationary states for nonlinear Schrödinger equations with periodic potentials, Journal of Statistical Physics, 2014, vol. 156, pp. 707-738. DOI: 10.1007/s10955-014-1023-x
  18. Hwang G., Akylas T.R., Yang J. Gap solitons and their linear stability in one-dimensional periodic media, Physica D: Nonlinear Phenomena, 2011, vol. 240, pp. 1055-1068. DOI: 10.1016/j.physd.2011.03.003
  19. Kizin P.P., Zezyulin D.A., Alfimov G.L. Oscillatory instabilities of gap solitons in a repulsive Bose-Einstein condensate, Physica D: Nonlinear Phenomena, 2016, vol. 337, pp. 58-66. DOI: 10.1016/j.physd.2016.07.007
  20. Kumar S., Hasegawa A. Quasi-soliton propagation in dispersion-managed optical fibers, Optics Letters, 1997, vol. 22, pp. 372-374. DOI: 10.1364/OL.22.000372
  21. Kunze M., Küpper T., Mezentsev V.K., Shapiro E.G., Turitsyn S. Nonlinear solitary waves with Gaussian tails, Physica D: Nonlinear Phenomena, 1999, vol. 128, pp. 273-295. DOI: 10.1016/S0167-2789(98)00297-8
  22. Louis P.J.Y., Ostrovskaya E.A., Savage C.M., Kivshar Yu.S. Bose-Einstein condensates in optical lattices: Band-gap structure and solitons, Physical Review A, 2003, vol. 67, 013602, 9 p. DOI: 10.1103/PhysRevA.67.013602
  23. Pelinovsky D.E., Kevrekidis P.G., Frantzeskakis D.J. Stability of discrete solitons in nonlinear Schrödinger lattices, Physica D: Nonlinear Phenomena, 2005, vol. 212, pp. 1-19. DOI: 10.1016/j.physd.2005.07.021
  24. Pelinovsky D.E., Sukhorukov A.A., Kivshar Yu.S. Bifurcations and stability of gap solitons in periodic potentials, Physical Review E, 2004, vol. 70, 036618, 17 p. DOI: 10.1103/PhysRevE.70.036618
  25. Trofimov V.A., Peskov N.V. Comparison of finite-defference schemes for the Gross-Pitaevskii equation, Mathematical Modelling and Analysis, 2009, vol. 14, pp. 109-126. DOI: 10.3846/1392-6292.2009.14.109-126
  26. Turitsyn S.K. Stability of an optical soliton with Gaussian tails, Physical Review E, 1997, vol. 56, pp. R3784-R3787. DOI: 10.1103/PhysRevE.56.R3784
  27. Turitsyn S.K. Theory of average pulse propagation in high-bit-rate optical transmission systems with strong dispersion management, Journal of Experimental and Theoretical Physics Letters, 1997, vol. 65, pp. 845-851. DOI: 10.1134/1.567435
  28. Wang J., Yang J., Alexander T.J., Kivshar Yu.S. Truncated-Bloch-wave solitons in optical lattices, Physical Review A, 2009, vol. 79, 043610, 5 p. DOI: 10.1103/PhysRevA.79.043610
  29. Yang J. Nonlinear waves in integrable and nonintegrable systems, SIAM, 2010.
  30. Zhang Y., Wu B. Composition relation between gap solitons and Bloch waves in nonlinear periodic systems, Physical Review Letters, 2009, vol. 102, 093905, 4 p. DOI: 10.1103/PhysRevLett.102.093905
Full text
<< Previous article