phone +7 (3412) 91 60 92

Archive of Issues


Russia Izhevsk
Year
2015
Volume
25
Issue
4
Pages
544-553
<<
>>
Section Mechanics
Title A model of a screwless underwater robot
Author(-s) Vetchanin E.V.ab, Karavaev Yu.L.ab, Kalinkin A.A.a, Klekovkin A.V.a, Pivovarova E.N.ab
Affiliations Izhevsk State Technical Universitya, Udmurt State Universityb
Abstract The paper is devoted to the development of a model of an underwater robot actuated by inner rotors. This design has no moving elements interacting with an environment, which minimizes a negative impact on it, and increases noiselessness of the robot motion in a liquid. Despite numerous discussions on the possibility and efficiency of motion by means of internal masses' movement, a large number of works published in recent years confirms a relevance of the research. The paper presents an overview of works aimed at studying the motion by moving internal masses. A design of a screwless underwater robot that moves by the rotation of inner rotors to conduct theoretical and experimental investigations is proposed. In the context of theoretical research a robot model is considered as a hollow ellipsoid with three rotors located inside so that the axes of their rotation are mutually orthogonal. For the proposed model of a screwless underwater robot equations of motion in the form of classical Kirchhoff equations are obtained.
Keywords mobile robot, screwless underwater robot, movement in ideal fluid
UDC 531.31, 517.912
MSC 70Hxx, 70G65
DOI 10.20537/vm150411
Received 4 November 2015
Language Russian
Citation Vetchanin E.V., Karavaev Yu.L., Kalinkin A.A., Klekovkin A.V., Pivovarova E.N. A model of a screwless underwater robot, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2015, vol. 25, issue 4, pp. 544-553.
References
  1. Bocharov L. Unmanned underwater vehicles. Their status and general development trends, Elektronika: Nauka, Tekhnologiya, Biznes, 2009, no. 8, pp. 88-93 (in Russian).
  2. Kiselev L.V., Medvedev A.V. Comparative analysis and the optimization of the autonomous underwater robots dynamic properties of different projects and configurations, Podvodnye issledovaniya i robototekhnika, 2012, no. 1 (13), pp. 24-35 (in Russian).
  3. Ageev M.D., Kiselev L.V., Kasatkin B.A. Avtomaticheskie podvodnye apparaty (Automatic underwater vehicles), Leningrad: Sudostroenie, 1981, 224 p.
  4. Bocharov A.Yu. Modern trends in the development of tiny underwater vehicles and robots abroad, Podvodnye issledovaniya i robototekhnika, 2006, no. 2, pp. 36-52 (in Russian).
  5. Ageev M.D. Avtonomnye podvodnye roboty. Sistemy i tekhnologii (Autonomous underwater robots. Systems and technologies), Moscow: Nauka, 2005, 400 p.
  6. Yuh J. Design and control of autonomous underwater robots: A survey, Autonomous Robots, 2000, vol. 8, no. 1, pp. 7-24.
  7. Lipski R., Putz C., Sikkema N. Autonomous underwater robots [electronic resource], Bradley University. http://cegt201.bradley.edu/projects/proj2015/autonomous_underwater_robots/Deliverables/Project_Proposal.pdf (accessed: 1.10.2015).
  8. Filaretov V.F., Lebedev A.V., Yukhimets D.A. Ustroistva i sistemy upravleniya podvodnykh robotov (Equipments and control systems of underwater robots), Moscow: Nauka, 2005, 272 p.
  9. Kiselev L.V., Inzartsev A.V., Matvienko V.V., Vaulin Yu.V. Navigation and control in hydrospace, Mekhatronika, avtomatizatsiya, upravlenie, 2004, no. 11, p. 35 (in Russian).
  10. Kato N., Ito Y., Kojima J., Takagi S., Asakawa K., Shirasaki Y. Control performance of autonomous underwater vehicle “AQUA EXPLORER 100” for inspection of underwater cables, Proceedings of IEEE Conference “Oceans Engineering for Today's Technology and Tomorrow's Preservation” (OCEANS'94), 1994, vol. 1, pp. I/135-I/140.
  11. Meldrum D.T., Haddrell T. GPS in autonomous underwater vehicles, Proceedings of the Sixth International Conference on Electronic Engineering in Oceanography, 19-21 July 1994, Cambridge, UK, Institution of Electrical Engineers, London, Publication no. 394, pp. 11-17.
  12. Lapierre L., Soetanto D. Nonlinear path-following control of an AUV, Ocean Engineering, 2007, vol. 34, no. 11, pp. 1734-1744.
  13. Loebis D., Sutton R., Chudley J., Naeem W. Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system, Control Engineering Practice, 2004, vol. 12, no. 12, pp. 1531-1539.
  14. Ishii K., Fujii T., Ura T. An on-line adaptation method in a neural network based control system for AUVs, IEEE Journal of Oceanic Engineering, 1995, vol. 20, no. 3, pp. 221-228.
  15. Woolsey C.A., Leonard N.E. Stabilizing underwater vehicle motion using internal rotors, Automatica, 2002, vol. 38, no. 12, pp. 2053-2062.
  16. Boreiko A.A., Gornak V.E., Mal'tseva S.V., Matvienko Yu.V., Mikhailov D.N. Small multifunctional autonomous underwater vehicle “MT-2010”, Podvodnye issledovaniya i robototekhnika, 2011, no. 2 (12), pp. 37-42 (in Russian).
  17. Lushnikov B.V., Yatsun S.F., Politov E.N., Tarasova E.S. Computer simulation of bionic floating robot dynamics, Izvestiya Samarskogo Nauchnogo Tsentra Ross. Akad. Nauk, 2010, vol. 12, no. 4 (3), pp. 562-567 (in Russian).
  18. Chernous'ko F.L., Bolotnik N.N. Mobile robots controlled by the motion of internal bodies, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 2010, vol. 16, no. 5, pp. 213-222 (in Russian).
  19. Borisov A.V., Kilin A.A., Mamaev I.S. How to control Chaplygin's sphere using rotors, Regular and Chaotic Dynamics, 2012, vol. 17, no. 3-4, pp. 258-272.
  20. Borisov A.V., Kilin A.A., Mamaev I.S. How to control the Chaplygin ball using rotors. II, Regular and Chaotic Dynamics, 2013, vol. 18, no. 1-2, pp. 144-158.
  21. Volkova L.Yu., Yatsun S.F. Control of the three-mass robot moving in the liquid environment, Nelin. Dinam., 2011, vol. 7, no. 4, pp. 845-857 (in Russian).
  22. Borisov A.V., Mamaev I.S., Kilin A.A., Kalinkin A.A., Karavaev Yu. L., Klenov A.I., Vetchanin E.V., Tenenev V.A. Bezvintovoi nadvodnyi robot (Screwless above-water robot). Patent RF, no. 153711, 2015.
  23. Ramodanov S.M., Tenenev V.A. Motion of a body with variable distribution of mass in a boundless viscous liquid, Nelin. Dinam., 2011, vol. 7, no. 3, pp. 635-647 (in Russian).
  24. Vetchanin E.V., Tenenev V.A. Motion control simulating in a viscous liquid of a body with variable geometry of weights, Komp'yuternye Issledovaniya i Modelirovanie, 2011, vol. 3, no. 4, pp. 371-381 (in Russian).
  25. Vetchanin E.V., Mamaev I.S., Tenenev V.A. The motion of a body with variable mass geometry in a viscous fluid, Nelin. Dinam., 2012, vol. 8, no. 4, pp. 815-836 (in Russian).
  26. Borisov A.V., Mamaev I.S. Dinamika tverdogo tela (Rigid body dynamics), Moscow-Izhevsk: Institute of Computer Science, 2005, 576 p.
  27. Clebsch A. Über die Bewegung eines Körpers in einer Flüssigkeit, Math. Annalen, 1871, vol. 3, pp. 238-262.
  28. Kozlov V.V., Ramodanov S.M. Motion of a variable body in an ideal liquid, J. Appl. Math. Mech., 2001, vol. 65, no. 4, pp. 579-587.
  29. Alalykin S.S., Bogatyrev A.V., Ivanova T.B., Pivovarova E.N. Determination of moments of inertia and the position of the center of mass of robotic devices, Vestnik Udmurtskogo Universiteta. Fizika i Khimiya, 2014, vol. 4, pp. 79-86 (in Russian).
Full text
<< Previous article
Next article >>