phone +7 (3412) 91 60 92

Archive of Issues

Libya; Malaysia Bangi; Khoms
Section Mathematics
Title Certain class of harmonic multivalent functions
Author(-s) Eljamal E.A.a, Darus M.b
Affiliations Al Mergeb Universitya, Universiti Kebangsaan Malaysiab
Abstract Making use of the generalized derivative operator, we introduce a new subclass of harmonic multivalent functions. We obtain the coefficient bounds, distortion inequalities and inclusion relationships involving the neighborhoods of subclasses of harmonic multivalent functions.
Keywords harmonic multivalent functions, derivative operator, neighborhood
UDC 517.53
MSC 30C45
DOI 10.20537/vm150309
Received 29 April 2015
Language English
Citation Eljamal E.A., Darus M. Certain class of harmonic multivalent functions, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2015, vol. 25, issue 3, pp. 388-396.
  1. Clunie J., Sheil-Small T. Harmonic univalent functions, Ann. Acad. Sci. Fenn., Ser. A I, Math., 1984, vol. 9, pp. 3-25.
  2. Eljamal E.A., Darus M. A subclass of harmonic univalent functions with varying arguments defined by generalized derivative operator, Advance in Decision Sciences, 2012, vol. 2012, Article ID 610406, 8 p.
  3. Eljamal E.A., Darus M. Some properties of complex harmonic mapping, ISRN Applied Mathematics, 2012, vol. 2012, Article ID 587689, 6 p.
  4. Al-Shaqsi K., Darus M. On certain class of harmonic univalent functions, Int. J. Contemp. Math. Sci., 2009, vol. 4, no. 24, pp. 1193-1207.
  5. Al-Shaqsi K., Darus M. On harmonic univalent functions with respect to $k$-symmetric points, Int. J. Contemp. Math. Sci., 2008, vol. 3, no. 3, pp. 111-118.
  6. Al-Shaqsi K., Darus M. On harmonic functions defined by derivative operator, Journal of Inequalities and Applications, 2008, vol. 2008, Article ID 263413, 10 p.
  7. Darus M., Al-Shaqsi K. On harmonic univalent functions defined by a generalised Ruscheweyh derivatives operator, Lobachevskii Journal of Mathematics, 2006, vol. 22, pp. 19-26.
  8. Al-Shaqsi K., Darus M. On a subclass of certain harmonic meromorphic functions, Far East Journal of Mathematical Sciences, 2006, vol. 20, issue 2, pp. 207-218.
  9. Eljamal E.A., Darus M. Inclusion properties for certain subclasses of $p$-valent functions associated with new generalized derivative operator, Vladikavkaz. Mat. Zh., 2013, vol. 15, no. 2, pp. 27-34.
  10. Salagean G.S. Subclass of univalent functions, Lecture Notes in Math., Berlin-Heidelberg-New York: Springer-Verlag, 1983, vol. 1013, pp. 362-372.
  11. Jahangiri J.M., Murugusundaramoorthy G., Vijaya K. Salagean-type harmonic univalent functions, Southwest J. Pure Appl. Math., 2002, issue 2, pp. 77-82.
  12. Silverman H. Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl., 1998, vol. 220, issue 1, pp. 283-289.
  13. Silverman H., Silvia E.M. Subclasses of harmonic univalent functions, New Zealand J. Math., 1999, vol. 28, no. 2, pp. 275-284.
  14. Jahangiri J.M. Harmonic functions starlike in the unit disk, J. Math. Anal. Appl., 1999, vol. 235, no. 2, pp. 470-477.
  15. Ahuja O.P., Jahangiri J.M. Multivalent harmonic starlike functions, Ann. Univ. Mariae Curie-Sklodowska, Sect. A, 2001, vol. 55, pp. 1-13.
  16. Yasar E., Yalcin S. Neighborhood of a new class of harmonic multivalent functions, Computers and Mathematics with Applications, 2011, vol. 62, no. 1, pp. 462-473.
  17. Goodman A.W. Univalent functions and non-analytic curves, Proc. Amer. Math. Soc., 1957, vol. 8, no. 3, pp. 598-601.
  18. Ruscheweyh S. Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 1981, vol. 81, no. 4, pp. 521-527.
Full text
<< Previous article
Next article >>