phone +7 (3412) 91 60 92

Archive of Issues

Russia Izhevsk
Section Mathematics
Title Falling motion of a circular cylinder interacting dynamically with a vortex pair in a perfect fluid
Author(-s) Sokolov S.V.a
Affiliations Udmurt State Universitya
Abstract We consider a system which consists of a circular cylinder subject to gravity interacting with $N$ vortices in a perfect fluid. Generically, the circulation about the cylinder is different from zero. The governing equations are Hamiltonian and admit evident integrals of motion: the horizontal and vertical components of the momentum; the latter is obviously non-autonomous. We then focus on the study of a configuration of the Foppl type: a falling cylinder is accompanied with a vortex pair ($N=2$). Now the circulation about the cylinder is assumed to be zero and the governing equations are considered on a certain invariant manifold. It is shown that, unlike the Foppl configuration, the vortices cannot be in a relative equilibrium. A restricted problem is considered: the cylinder is assumed to be sufficiently massive and thus its falling motion is not affected by the vortices. Both restricted and general problems are studied numerically and remarkable qualitative similarity between the problems is outlined: in most cases, the vortex pair and the cylinder are shown to exhibit scattering.
Keywords point vortices, vortex pair, Hamiltonian systems, reduction
UDC 512.77, 517.912
MSC 70Hxx, 70G65
DOI 10.20537/vm140206
Received 19 May 2014
Language Russian
Citation Sokolov S.V. Falling motion of a circular cylinder interacting dynamically with a vortex pair in a perfect fluid, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2014, issue 2, pp. 86-99.
  1. Borisov A.V., Mamaev I.S. Dinamika tverdogo tela. Gamil'tonovy metody, integriruemost', khaos (Dynamics of the Solids. Hamiltonian methods, integrability, chaos), Moscow-Izhevsk: Institute of Computer Science, 2005, 576 p.
  2. Borisov A.V., Mamaev I.S. Matematicheskie metody dinamiki vikhrevykh struktur (Mathematical methods in the dynamics of vortex structures), Moscow-Izhevsk: Institute of Computer Science, 2005, 368 p.
  3. Borisov A.V., Mamaev I.S., Sokolovskii M.A. (Ed.) Fundamental'nye i prikladnye problemy teorii vikhrei (Fundamental and applying problems in the vortex theory), Moscow-Izhevsk: Institute of Computer Science, 2003, 704 p.
  4. Kozlov V.V. On a heavy cylindrical body falling in a fluid, Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, 1993, no. 4, pp. 113-117 (in Russian).
  5. Manakov S.V., Shchur L.N. Stochastic aspect of two-particle scattering, JETP Lett., 1983, vol. 37, no. 1, pp. 54-57.
  6. Chaplygin S.A. On the motion of heavy bodies in an incompressible fluid, Complete Works: Vol. 1, Leningrad: Izd. Akad. Nauk SSSR, 1933, pp. 133-150 (in Russian).
  7. Aref H., Stremler M.A. Four-vortex motion with zero total circulation and impulse, Phys. of Fluids, 1999, vol. 11, issue 12, pp. 3704-3715.
  8. Borisov A.V., Mamaev I.S. An integrability of the problem on motion of cylinder and vortex in the ideal fluid, Regular and Chaotic Dynamics, 2003, vol. 8, no. 2, pp. 163-166.
  9. Borisov A.V., Mamaev I.S. On the motion of a heavy rigid body in an ideal fluid with circulation, Chaos, 2006, vol. 16, no. 1, 013118.
  10. Borisov A.V., Mamaev I.S., Ramodanov S.M. Dynamics of a circular cylinder interacting with point vortices, Discrete and Contin. Dyn. Syst. B, 2005, vol. 5, no. 1, pp. 35-50.
  11. Foppl L. Wirbelbewegung hinter einem Kreiszylinder, Sitzungsberichte der Bayerischen Akademie der Wissenschaften, 1913.
  12. Helmholtz H. Uber integrale hydrodinamischen gleichungen weiche den wirbelbewegungen entsprechen, J. reine angew. Math., 1858, vol. 55, s. 25-55. Russian translation is in the book Osnovy vikhrevoi teorii (Fundamentals of the Vortex Theory), Moscow-Izhevsk: Institute of Computer Science, 2002.
  13. Jones M.A., Shelly M.J. Falling cards, J. Fluid Mech., 2005, vol. 540, pp. 393-425.
  14. Kadtke J.B., Novikov E.A. Chaotic capture of vortices by a moving body. I. The single point vortex case, Chaos, 1993, vol. 3, no. 4, pp. 543-553.
  15. Kirchhoff G.R. Vorlesungen uber Mathematische Physik, Teubner, Leipzig, 1876, vol. I.
  16. Michelin S., Smith S.G.L. Falling cards and flapping flags: understanding fluid-solid interaction using an unsteady point vortex model, Theor. Comput. Fluid Dyn., 2010, vol. 24, pp. 195–-200.
  17. Routh E.J. Some application of conjugate function, Proc. Lond. Math. Soc., 1881, vol. 12, no. 170 / 171, pp. 73-89.
  18. Shashikanth B.N., Symmetric pairs of point vortices interacting with a neutrally buoyant two-dimentional circular cylinder, Phys. of Fluids, 2006, vol. 18, 127103.
  19. Shashikanth B.N., Marsden J.E., Burdick J.W., Kelly S.D. The Hamiltonian structure of a 2D rigid circular cylinder interacting dynamically with $N$ point vortices, Phys. of Fluids, 2002, vol. 14, pp. 1214-1227.
  20. Sokolov S.V. Falling motion of a circular cylinder interacting dynamically with $N$ point vortices, Nonlinear Dynamics and Mobile Robotics, 2014, vol. 2, no. 1, pp. 99-113.
  21. Sokolov S.V., Ramodanov S.M. Falling motion of a circular cylinder interacting dynamically with a point vortex, Regular and Chaotic Dynamics, 2013, vol. 18, no. 1-2, pp. 184-193.
  22. Tophoj L., Aref H. Chaotic scattering of two identical point vortex pairs revisited, Phys. of Fluids, 2008, vol. 20, 093605.
Full text
<< Previous article
Next article >>