References

 Vasil’ev F.P. Duality in linear control and observation problems, Differ. Uravn., 1995, vol. 31, pp. 1893–1900.
 Egorov A.I., Znamenskaya L.N. Twoend controllability of elastic vibrations of systems with distributed and lumped parameters, Comput. Math. Math. Phys., 2006, vol. 46, no. 11, pp. 1940–1952. Original Russian text published in Zh. Vychisl. Mat. Mat. Fiz., 2006, vol. 46, no. 11, pp. 2032–2044.
 Vasil’ev F.P. Metody optimizatsii (Optimization methods), Moscow: Faktorial, 2002, 824 p.
 Egorov A.I. Osnovy teorii upravleniya (Fundamentals of control theory), Moscow: Fizmatlit, 2004, 504 p.
 Lions J.L. Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev., 1988, vol. 30, no. 1, pp. 1–68.
 Fursikov A.V. Optimal’noe upravleniye raspredelennymi sistemami. Teoriya i prilozheniya (Optimal control of distributed parameter systems. Theory and applications), Novosibirsk: Nauchnaya kniga, 1999, 352+xii p.
 Rozanova A.V. Controllability for a nonlinear abstract evolution equation, Math. Notes, 2004, vol. 76, no. 4, pp. 511–524. Original Russian text published in Mat. Zametki, 2004, vol. 76, no. 4, pp. 553–567.
 Chernov A.V. Sufficient conditions for the controllability of nonlinear distributed systems, Comput. Math. Math. Phys., 2012, vol. 52, no. 8, pp. 1115–1127. Original Russian text published in Zh. Vychisl. Mat. Mat. Fiz., 2012, vol. 52, no. 8, pp. 1400–1414. DOI: 10.1134/S0965542512050053.
 Chernov A.V. On the convexity of global solvability sets for controlled initialboundary value problems, Differ. Equations, 2012, vol. 48, no. 4, pp. 586–595. Original Russian text published in Differ. Uravn., 2012, vol. 48, no. 4, pp. 577–586. DOI: 10.1134/S001226611204012X.
 Chernov A.V. Volterra functional operator games on a given set, Mat. Teor. Igr Prilozh., 2011, vol. 3, no. 1, pp. 91–117.
 Chernov A.V. On existence of εequilibrium in Volterra functional operator games without discrimination, Mat. Teor. Igr Prilozh., 2012, vol. 4, no. 1, pp. 74–92.
 Chernov A.V. A majorant criterion for the total preservation of global solvability of controlled functional operator equation, Russian Mathematics (Iz. VUZ), 2011, vol. 55, no. 3, pp. 85–95.Original Russian text published in Izv. Vyssh. Uchebn. Zaved., Mat., 2011, no. 3, pp. 95–107. DOI: 10.3103/S1066369X11030108.
 Chernov A.V. A majorantminorant criterion for the total preservation of global solvability of a functional operator equation, Russian Mathematics (Iz. VUZ), 2012, vol. 56, no. 3, pp. 55–65.Original Russian text published in Izv. Vyssh. Uchebn. Zaved., Mat., 2012, no. 3, pp. 62–73. DOI: 10.3103/S1066369X12030085.
 Chernov A.V. On the convergence of the conditional gradient method in distributed optimization problems, Comput. Math. Math. Phys., 2011, vol. 51, no. 9, pp. 1510–1523. Original Russian text published in Zh. Vychisl. Mat. Mat. Fiz., 2011, vol. 51, no. 9, pp. 1616–1629. DOI: 10.1134/S0965542511090077.
 Sumin V.I., Chernov A.V. Volterra operator equations in Banach spaces: existence stability of global solutions, NNSU, Nizhni Novgorod, 2000, 75 p. Deposited in VINITI 25.04.2000, no. 1198V00.
 Sumin V.I., Chernov A.V. On sufficient conditions of existence stability of global solutions of Volterra operator equations, Vestn. Nizhegorod. Univ. N.I. Lobachevskogo, Mat. Model. Optim. Upr., 2003, no. 1 (26), pp. 39–49.
 Sumin V.I. The features of gradient methods for distributed optimal control problems, USSR Comput. Math. Math. Phys., 1990, vol. 30, no. 1, pp. 1–15. Original Russian text published in Zh. Vychisl. Mat. Mat. Fiz., 1990, vol. 30, no. 1, pp. 3–21.
 Sumin V.I. Controlled functional Volterra equations in Lebesgue spaces, Vestn. Nizhegorod. Univ. N.I. Lobachevskogo, Mat. Model. Optim. Upr., 1998, no. 2 (19), pp. 138–151.
 Sumin V.I., Chernov A.V. Operators in spaces of measurable functions: the Volterra property and quasinilpotency, Differ. Equations, 1998, vol. 34, no. 10, pp. 1403–1411. Original Russian text published in Differ. Uravn., 1998, vol. 34, no. 10, pp. 1402–1411.
 Chernov A.V. On Volterra type generalization of monotonization method for nonlinear functional operator equations, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2012, no. 2, pp. 84–99.
 Ladyzhenskaya O.A., Solonnikov V.A., Ural’tseva N.N. Lineinye i kvazilineinye uravneniya parabolicheskogo tipa (Linear and quasilinear equations of the parabolic type), Moscow: Nauka, 1967, 736 p.
 Ladyzhenskaya O.A. Smeshannaya zadacha dlya giperbolicheskogo uravneniya (The mixed problem for a hyperbolic equation), Moscow: Gos. Izd. Tekh. Teor. Lit., 1953, 280 p.
