phone +7 (3412) 91 60 92

Archive of Issues


Russia Chernogolovka; Moscow
Year
2024
Volume
34
Issue
1
Pages
137-164
<<
Section Mechanics
Title Modeling of heat and mass transfer in the discontinuum approximation
Author(-s) Martynenko S.I.abc
Affiliations Bauman Moscow State Technical Universitya, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciencesb, Joint Institute for High Temperatures, Russian Academy of Sciencesc
Abstract The article presents a theoretical analysis of the governing equations expressing the fundamental conservation laws in the continuum and discontinuum approximations, and methods for solving problems of hydrodynamics as one of the most important subfields of continuum mechanics. This article is an attempt to more accurately describe physicochemical macro-processes. It is shown that the most suitable equations for computer modeling are the conservation laws under natural constraints on the minimum spatial and time scales, i.e., equations without partial derivatives and constraints on the solution smoothness. Using the continuity and thermal conductivity equations, a phenomenological method for constructing and numerically solving the governing equations is presented, and comparison with the traditional approach is given.
Keywords continuum medium, Knudsen number, phenomenological approach, mathematical modeling, heat and mass transfer
UDC 532.5.013
MSC 76A02, 676D05, 76M12
DOI 10.35634/vm240109
Received 24 December 2023
Language Russian
Citation Martynenko S.I. Modeling of heat and mass transfer in the discontinuum approximation, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2024, vol. 34, issue 1, pp. 137-164.
References
  1. Samarskii A.A., Mikhailov A.P. Matematicheskoe modelirovanie: Idei. Metody. Primery (Mathematical modeling: Ideas. Methods. Examples), Moscow: Fizmatlit, 2005.
  2. Mahian O., Kolsi L., Amani M., Estellé P., Ahmadi G., Kleinstreuer C., Marshall J.S., Taylor R.A., Abu-Nada E., Rashidi S., Niazmand H., Wongwises S., Hayat T., Kasaeian A., Pop I. Recent advances in modeling and simulation of nanofluid flows — Part II: Applications, Physics Reports, 2019, vol. 791, pp. 1–59. https://doi.org/10.1016/j.physrep.2018.11.003
  3. Mbroh N.A., Munyakazi J.B. A fitted operator finite difference method of lines for singularly perturbed parabolic convection–diffusion problems, Mathematics and Computers in Simulation, 2019, vol. 165, pp. 156–171. https://doi.org/10.1016/j.matcom.2019.03.007
  4. Wang Qian, Ren Yu-Xin, Pan Jianhua, Li Wanai. Compact high order finite volume method on unstructured grids III: Variational reconstruction, Journal of Computational Physics, 2017, vol. 337, pp. 1–26. https://doi.org/10.1016/j.jcp.2017.02.031
  5. Busto S., Dumbser M., Escalante C., Favrie N., Gavrilyuk S. On high order ADER discontinuous Galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive systems, Journal of Scientific Computing, 2021, vol. 87, issue 2, article number: 48. https://doi.org/10.1007/s10915-021-01429-8
  6. Yakovlev V.I. From the history of fluid mechanics 17–19th centuries, Bulletin of Perm University. Mathematics. Mechanics. Computer science, 2018, issue 1 (40), pp. 74–82. https://www.elibrary.ru/item.asp?id=34861838
  7. Loitsyanskii L.G. Mekhanika zhidkosti i gaza (Mechanics of liquid and gas), Moscow: Drofa, 2003.
  8. Blechta J., Málek J., Rajagopal K.R. On the classification of incompressible fluids and a mathematical analysis of the equations that govern their motion, SIAM Journal on Mathematical Analysis, 2020, vol. 52, issue 2, pp. 1232–1289. https://doi.org/10.1137/19M1244895
  9. Cebeci T., Bradshaw P. Physical and computational aspects of convective heat transfer. Berlin–Heidelberg: Springer, 1984. https://doi.org/10.1007/978-3-662-02411-9
  10. Gallagher I. From Newton to Navier–Stokes, or how to connect fluid mechanics equations from microscopic to macroscopic scales, Bulletin of the American Mathematical Society, 2019, vol. 56, no. 1, pp. 65–85. https://doi.org/10.1090/bull/1650
  11. Rachid M. Incompressible Navier–Stokes–Fourier limit from the Landau equation, Kinetic and Related Models, 2021, vol. 14, issue 4, pp. 599–638. https://doi.org/10.3934/krm.2021017
  12. Han Guofeng, Liu Xiaoli, Huang Jin, Nawnit Kumar, Sun Liang. Modified Boltzmann equation and extended Navier–Stokes equations, Physics of Fluids, 2020, vol. 32, issue 2, 022001. https://doi.org/10.1063/1.5139501
  13. Bobylev A.V. Boltzmann equation and hydrodynamics beyond Navier–Stokes, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, vol. 376, issue 2118, 20170227. https://doi.org/10.1098/rsta.2017.0227
  14. Jang Juhi, Kim Chanwoo. Incompressible Euler limit from Boltzmann equation with diffuse boundary condition for analytic data, Annals of PDE, 2021, vol. 7, issue 2, article number: 22. https://doi.org/10.1007/s40818-021-00108-z
  15. Patankar S.V. Numerical heat transfer and fluid flow, Boca Raton: CRC Press, 2018. https://doi.org/10.1201/9781482234213
  16. Patankar S.V. Computation of conduction and duct flow heat transfer, Boca Raton: CRC Press, 2017. https://doi.org/10.1201/9781315139951
  17. Samarskii A.A. Parabolic equations and difference methods for their solution, Proceedings of All-Union Workshop on Differential Equations, 1958, Yerevan: Academy of Sciences of Armenian Soviet Socialist Republic, 1960, pp. 148–160 (in Russian).
  18. Fedorenko R.P. A relaxation method for solving elliptic difference equations // USSR Computational Mathematics and Mathematical Physics, 1962, vol. 1, issue 4, pp. 1092–1096. https://doi.org/10.1016/0041-5553(62)90031-9
  19. Vanka S.P. Block-implicit multigrid solution of Navier–Stokes equations in primitive variables, Journal of Computational Physics, 1986, vol. 65, issue 1, pp. 138–158. https://doi.org/10.1016/0021-9991(86)90008-2
  20. Svärd M. A new Eulerian model for viscous and heat conducting compressible flows, Physica A: Statistical Mechanics and its Applications, 2018, vol. 506, pp. 350–375. https://doi.org/10.1016/j.physa.2018.03.097
  21. Xu Shenren, Zhao Jiazi, Wu Hangkong, Zhang Sen, Müller J.-D., Huang Huang, Rahmati M., Wang Dingxi. A review of solution stabilization techniques for RANS CFD solvers, Aerospace, 2023, vol. 10, issue 3, 230. https://doi.org/10.3390/aerospace10030230
  22. Heinz S. A mathematical solution to the computational fluid dynamics (CFD) dilemma, Mathematics, 2023, vol. 11, issue 14, 3199. https://doi.org/10.3390/math11143199
  23. Deville M.O. Exact solutions of the Navier–Stokes equations, An Introduction to the Mechanics of Incompressible Fluids, Cham: Springer, 2022, pp. 51–89. https://doi.org/10.1007/978-3-031-04683-4_3
  24. Zezin V.G. Mekhanika zhidkosti i gaza: uchebnoe posobie (Mechanics of liquid and gas: textbook), Chelyabinsk: South Ural State University, 2016.
  25. Caltagirone J.-P. An alternative to the concept of continuous medium, Acta Mechanica, 2021, vol. 232, issue 12, pp. 4691–4703. https://doi.org/10.1007/s00707-021-03070-w
  26. Samarskii A.A. The theory of difference schemes, Boca Raton: CRC Press, 2001. https://doi.org/10.1201/9780203908518
  27. Martynenko S.I. The robust multigrid technique: For black-box software, Berlin: De Gruyter, 2017. https://doi.org/10.1515/9783110539264
  28. Martynenko S.I. Numerical methods for black-box software in computational continuum mechanics: Parallel high-performance computing, Berlin: De Gruyter, 2023. https://doi.org/10.1515/9783111319568
Full text
<< Previous article