phone +7 (3412) 91 60 92

Archive of Issues


Russia Izhevsk
Year
2023
Volume
33
Issue
3
Pages
534-547
<<
Section Computer science
Title Generation of adaptive hexahedral meshes from surface and voxel geometric models
Author(-s) Karavaev A.S.a, Kopysov S.P.a
Affiliations Udmurt State Universitya
Abstract We present a modification of the developed hexahedral mesh generator from voxel data which allows constructing adaptive computational meshes. Construction of the refinement field is based on geometry features of the described model when it has a large thickness difference in dimensions or small and thin areas. A universal criterion for cells refinement is proposed which gives the possibility of its use in the case of volumetric (voxel) and surface (STL) representations of the model geometry. The refinement templates that provide conformal mesh closure are described. The results of the algorithm performance are given.
Keywords hexahedral mesh generator, mesh refinement, volume data, CAD model, STL-geometry
UDC 004.925.8
MSC 65M50
DOI 10.35634/vm230310
Received 17 March 2023
Language Russian
Citation Karavaev A.S., Kopysov S.P. Generation of adaptive hexahedral meshes from surface and voxel geometric models, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2023, vol. 33, issue 3, pp. 534-547.
References
  1. Ray N., Sokolov D., Reberol M., Ledoux F., Lévy B. Hex-dominant meshing: Mind the gap!, Computer-Aided Design, 2018, vol. 102, pp. 94-103. https://doi.org/10.1016/j.cad.2018.04.012
  2. Pellerin J., Johnen A., Verhetsel K., Remacle J.-F. Identifying combinations of tetrahedra into hexahedra: A vertex based strategy, Computer-Aided Design, 2018, vol. 105, pp. 1-10. https://doi.org/10.1016/j.cad.2018.05.004
  3. Ruiz-Gironés E., Roca X., Sarrate J. The receding front method applied to hexahedral mesh generation of exterior domains, Engineering with Computers, 2012, vol. 28, issue 4, pp. 391-408. https://doi.org/10.1007/s00366-011-0233-y
  4. Bo Ren, Cheng Wang. Mapping-based 3D hexahedral finite element mesh generation method, Wuhan University Journal of Natural Sciences, 2007, vol. 12, issue 2, pp. 255-259. https://doi.org/10.1007/s11859-006-0025-1
  5. Livesu M., Pietroni N., Puppo E., Sheffer A., Cignoni P. LoopyCuts: practical feature-preserving block decomposition for strongly hex-dominant meshing, ACM Transactions on Graphics, 2020, vol. 39, issue 4, article no.: 121, pp. 121:1-121:17. https://doi.org/10.1145/3386569.3392472
  6. Takayama K. Dual sheet meshing: An interactive approach to robust hexahedralization, Computer Graphics Forum, 2019, vol. 38, issue 2, pp. 37-48. https://doi.org/10.1111/cgf.13617
  7. Ledoux F., Weill J.-C. An extension of the reliable whisker weaving algorithm, Proceedings of the 16th International Meshing Roundtable, Berlin–Heidelberg: Springer, 2008, pp. 215-232. https://doi.org/10.1007/978-3-540-75103-8_13
  8. Schneiders R., Bünten R. Automatic generation of hexahedral finite element meshes, Computer Aided Geometric Design, 1995, vol. 12, issue 7, pp. 693-707. https://doi.org/10.1016/0167-8396(95)00013-V
  9. Lili Huang, Guoqun Zhao, Zhonglei Wang, Xiangwei Zhang. Adaptive hexahedral mesh generation and regeneration using an improved grid-based method, Advances in Engineering Software, 2016, vol. 102, pp. 49-70. https://doi.org/10.1016/j.advengsoft.2016.09.004
  10. Zhang Yongjie, Bajaj C. Adaptive and quality quadrilateral/hexahedral meshing from volumetric data, Computer Methods in Applied Mechanics and Engineering, 2006, vol. 195, issues 9-12, pp. 942-960. https://doi.org/10.1016/j.cma.2005.02.016
  11. Gao Xifeng, Shen Hanxiao, Panozzo D. Feature preserving octree-based hexahedral meshing, Computer Graphics Forum, 2019, vol. 38, issue 5, pp. 135-149. https://doi.org/10.1111/cgf.13795
  12. Karavaev A.S., Kopysov S.P. A modification of the hexahedral mesh generator based on voxel geometry representation, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2020, vol. 30, issue 3, pp. 468-479. https://doi.org/10.35634/vm200308
  13. Karavaev A.S., Kopysov S.P. Hexahedral mesh generation using voxel field recovery, Numerical Geometry, Grid Generation and Scientific Computing, Cham: Springer, 2020, pp. 295-305. https://doi.org/10.1007/978-3-030-76798-3_19
  14. Ito Yasushi, Shih A.M., Soni B.K. Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement templates, International Journal for Numerical Methods in Engineering, 2009, vol. 77, issue 13, pp. 1809-1833. https://doi.org/10.1002/nme.2470
  15. Tchon Ko-Foa, Khachan M., Guibault F., Camarero R. Three-dimensional anisotropic geometric metrics based on local domain curvature and thickness, Computer-Aided Design, 2005, vol. 37, issue 2, pp. 173-187. https://doi.org/10.1016/j.cad.2004.05.007
  16. Qian Jin, Zhang Yongjie. Automatic unstructured all-hexahedral mesh generation from B-Reps for non-manifold CAD assemblies, Engineering with Computers, 2012, vol. 28, issue 4, pp. 345-359. https://doi.org/10.1007/s00366-011-0232-z
  17. Sun Lu, Zhao Guoqun, Ma Xinwu. Adaptive generation and local refinement methods of three-dimensional hexahedral element mesh, Finite Elements in Analysis and Design, 2012, vol. 50, pp. 184-200. https://doi.org/10.1016/j.finel.2011.09.009
  18. Owen S.J., Shih R.M. A template-based approach for parallel hexahedral two-refinement, Procedia Engineering, 2015, vol. 124, pp. 31-43. https://doi.org/10.1016/j.proeng.2015.10.120
Full text
<< Previous article