phone +7 (3412) 91 60 92

Archive of Issues


Russia Yaroslavl
Year
2023
Volume
33
Issue
2
Pages
240-258
<<
>>
Section Mathematics
Title Stability and local bifurcations of single-mode equilibrium states of the Ginzburg-Landau variational equation
Author(-s) Kulikov D.A.a
Affiliations Yaroslavl State Universitya
Abstract One of the versions of the generalized variational Ginzburg-Landau equation is considered, supplemented by periodic boundary conditions. For such a boundary value problem, the question of existence, stability, and local bifurcations of single-mode equilibrium states is studied. It is shown that in the case of a nearly critical threefold zero eigenvalue, in the problem of stability of single-mode spatially inhomogeneous equilibrium states, subcritical bifurcations of two-dimensional invariant tori filled with spatially inhomogeneous equilibrium states are realized. The analysis of the stated problem is based on such methods of the theory of infinite-dimensional dynamical systems as the theory of invariant manifolds and the apparatus of normal forms. Asymptotic formulas are obtained for the solutions that form invariant tori.
Keywords Ginzburg-Landau variational equation, boundary value problem, stability, bifurcations, asymptotic formulas
UDC 517.977
MSC 37L10, 37L15
DOI 10.35634/vm230204
Received 11 January 2023
Language Russian
Citation Kulikov D.A. Stability and local bifurcations of single-mode equilibrium states of the Ginzburg-Landau variational equation, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2023, vol. 33, issue 2, pp. 240-258.
References
  1. Kuramoto Y., Tsuzuki T. On the formation of dissipative structures in reaction-diffusion systems: Reductive perturbation approach, Progress of Theoretical Physics, 1975, vol. 54, issue 3, pp. 687-699. https://doi.org/10.1143/PTP.54.687
  2. Kuramoto Y. Chemical oscillations, waves, and turbulence, Berlin: Springer, 1984. https://doi.org/10.1007/978-3-642-69689-3
  3. Malinetskii G.G., Potapov A.B., Podlazov A.V. Nelineinaya dinamika. Podkhody, rezul'taty, nadezhdy (Nonlinear dynamics. Approaches, results, hopes), Moscow: KomKniga, 2006.
  4. Aronson I.S., Kramer L. The world of the complex Ginzburg-Landau equation, Reviews of Modern Physics, 2002, vol. 74, issue 1, pp. 99-143. https://doi.org/10.1103/RevModPhys.74.99
  5. Elmer F.J. Nonlinear and nonlocal dynamics of spatially extended systems: Stationary states, bifurcations and stability, Physica D: Nonlinear Phenomena, 1988, vol. 30, issue 3, pp. 321-342. https://doi.org/10.1016/0167-2789(88)90024-3
  6. Duan Jinqiao, Ly Hung Van, Titi E.S. The effect of nonlocal interactions on the dynamics of the Ginzburg-Landau equation, Zeitschrift für angewandte Mathematik und Physik, 1996, vol. 47, issue 3, pp. 432-455. https://doi.org/10.1007/BF00916648
  7. Bartuccelli M., Constantin P., Doering C.R., Gibbon J.D., Gisselfält M. On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation, Physica D: Nonlinear Phenomena, 1990, vol. 44, issue 3, pp. 421-444. https://doi.org/10.1016/0167-2789(90)90156-J
  8. Doering C.R., Gibbon J.D., Levermore C.D. Weak and strong solutions of the complex Ginzburg-Landau equation, Physica D: Nonlinear Phenomena, 1994, vol. 71, issue 3, pp. 285-318. https://doi.org/10.1016/0167-2789(94)90150-3
  9. Doering C.R., Gibbon J.D., Holm D.D., Nicolaenko B. Low-dimensional behaviour in the complex Ginzburg-Landau equation, Nonlinearity, 1988, vol. 1, no. 2, pp. 279-309. https://doi.org/10.1088/0951-7715/1/2/001
  10. Kukavica I. On the number of determining nodes for the Ginzburg-Landau equation, Nonlinearity, 1992, vol. 5, no. 5, pp. 997-1006. https://doi.org/10.1088/0951-7715/5/5/001
  11. Temam R. Infinite-dimensional dynamical systems in mechanics and physics, New York: Springer, 1997. https://doi.org/10.1007/978-1-4612-0645-3
  12. Kulikov A., Kulikov D. Invariant varieties of the periodic boundary value problem of the nonlocal Ginzburg-Landau equation, Mathematical Methods in the Applied Sciences, 2021, vol. 44, issue 15, pp. 11985-11997. https://doi.org/10.1002/mma.7103
  13. Kulikov A.N., Kulikov D.A. Invariant manifolds and global attractor of the Ginzburg-Landau integro-differential equation, Differential Equations, 2022, vol. 58, issue 11, pp. 1499-1513. https://doi.org/10.1134/S00122661220110064
  14. Kudryashov N.A. First integrals and general solution of the complex Ginzburg-Landau equation, Applied Mathematics and Computation, 2022, vol. 386, 125407. https://doi.org/10.1016/j.amc.2020.125407
  15. Elmandouh A.A. Bifurcation and new traveling wave solutions for the 2D Ginzburg-Landau equation, The European Physical Journal Plus, 2020, vol. 135, issue 8, article number: 648. https://doi.org/10.1140/epjp/s13360-020-00675-3
  16. Tzaneteas T., Sigal I.M. On Abrikosov lattice solutions of the Ginzburg-Landau equations, Mathematical Modelling of Natural Phenomena, 2013, vol. 8, no. 5, pp. 190-205. https://doi.org/10.1051/mmnp/20138512
  17. Xu Guoan, Zhang Yi, Li Jibin. Exact solitary wave and periodic-peakon solutions of the complex Ginzburg-Landau equation: Dynamical system approach, Mathematics and Computers in Simulation, 2022, vol. 191, pp. 157-167. https://doi.org/10.1016/j.matcom.2021.08.007
  18. Liu Wenjun, Yu Weitian, Yang Chunyu, Liu Mengli, Zhang Yujia, Lei Ming. Analytic solutions for the generalized complex Ginzburg-Landau equation in fiber lasers, Nonlinear Dynamics, 2017, vol. 89, issue 4, pp. 2933-2939. https://doi.org/10.1007/s11071-017-3636-5
  19. Li Xiaolin, Li Shuling. A linearized element-free Galerkin method for the complex Ginzburg-Landau equation, Computers and Mathematics with Applications, 2021, vol. 90, pp. 135-147. https://doi.org/10.1016/j.camwa.2021.03.027
  20. Cong Hongzi, Gao Meina. Quasi-periodic solutions for the generalized Ginzburg-Landau equation with derivatives in the nonlinearity, Journal of Dynamics and Differential Equations, 2011, vol. 23, issue 4, pp. 1053-1074. https://doi.org/10.1007/s10884-011-9229-y
  21. Kulikov A.N., Kulikov D.A. Local bifurcations of plane running waves for the generalized cubic Schrödinger equation, Differential Equations, 2010, vol. 46, issue 9, pp. 1299-1308. https://doi.org/10.1134/S0012266110090065
  22. Kulikov A.N., Kulikov D.A. Local bifurcations and a global attractor for two versions of the weakly dissipative Ginzburg-Landau equation, Theoretical and Mathematical Physics, 2022, vol. 212, issue 1, pp. 925-943. https://doi.org/10.1134/S0040577922070042
  23. Kulikov A.N., Rudy A.S. States of equilibrium of condensed matter within Ginzburg-Landau $\Psi$$4$ -model, Chaos, Solitons and Fractals, 2003, vol. 15, issue 1, pp. 75-85. https://doi.org/10.1016/S0960-0779(02)00091-7
  24. Kulikov A.N., Kulikov D.A. Equilibrium states of the variational Ginzburg-Landau equation, Vestnik Natsional'nogo Issledovatel'skogo Yadernogo Universiteta “MIFI”, 2017, vol. 6, no. 6, pp. 496-502 (in Russian). https://doi.org/10.1134/S2304487X17060074
  25. Kulikov D.A. Generalized variant of the variational Ginzburg-Landau equation, Vestnik Natsional'nogo Issledovatel'skogo Yadernogo Universiteta “MIFI”, 2020, vol. 9, no. 4, pp. 329-337 (in Russian). https://doi.org/10.1134/S2304487X20040045
  26. Sobolev S.L. Nekotorye primeneniya funktsional'nogo analiza v matematicheskoi fizike (Some applications of functional analysis in mathematical physics), Leningrad: Leningrad State University, 1950.
  27. Sobolevskii P.E. Equations of parabolic type in a Banach space, Trudy Moskovskogo Matematicheskogo Obshchestva, 1961, vol. 10, pp. 297-350 (in Russian). https://www.mathnet.ru/eng/mmo123
  28. Krein S.G. Lineinye differentsial'nye uravneniya v banakhovom prostranstve (Linear differential equations in a Banach space), Moscow: Nauka, 1967.
  29. Naimark M. Lineinye differentsial'nye operatory (Linear differential operators), Moscow: Nauka, 1969.
  30. Kelley A. The stable, center-stable, center, center-unstable, unstable manifolds, Journal of Differential Equations, 1967, vol. 3, issue 4, pp. 546-570. https://doi.org/10.1016/0022-0396(67)90016-2
  31. Marsden J.E., McCracken M. The Hopf bifurcation and its applications, New York: Springer, 1976. https://doi.org/10.1007/978-1-4612-6374-6
  32. Kulikov A.N. On smooth invariant manifolds of the semigroup of nonlinear operators in a Banach space, Issledovaniya po ustoichivosti i teorii kolebanii, Yaroslavl: Yaroslavl State University, 1976, pp. 114-129 (in Russian).
  33. Kulikov A.N., Kulikov D.A. Formation of wavy nanostructures on the surface of flat substrates by ion bombardment, Computational Mathematics and Mathematical Physics, 2012, vol. 52, issue 5, pp. 800-814. https://doi.org/10.1134/S0965542512050132
  34. Kulikov A.N., Kulikov D.A. Local bifurcations in the Cahn-Hilliard and Kuramoto-Sivashinsky equations and in their generalizations, Computational Mathematics and Mathematical Physics, 2019, vol. 59, issue 4, pp. 630-643. https://doi.org/10.1134/S0965542519040080
  35. Guckenheimer J., Holmes P. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-1140-2
Full text
<< Previous article
Next article >>