phone +7 (3412) 91 60 92

Archive of Issues


Russia Stavropol
Year
2022
Volume
32
Issue
4
Pages
502-527
<<
>>
Section Mathematics
Title Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind
Author(-s) Beshtokov M.Kh.a
Affiliations North-Caucasus Federal Universitya
Abstract We study an initial-boundary value problem for a multidimensional pseudoparabolic equation with variable coefficients and boundary conditions of the third kind. The multidimensional pseudoparabolic equation is reduced to an integro-differential equation with a small parameter. It is shown that as the small parameter tends to zero, the solution of the resulting modified problem converges to the solution of the original problem. For an approximate solution of the obtained problem, a locally one-dimensional difference scheme by A. A. Samarsky is constructed. An a priori estimate is obtained by the method of energy inequalities, from which the uniqueness, stability, and convergence of the solution of the locally one-dimensional difference scheme to the solution of the original differential problem follow. For a two-dimensional problem, an algorithm for the numerical solution of the initial-boundary value problem for a pseudoparabolic equation with conditions of the third kind is developed.
Keywords pseudoparabrolic equation, Hallaire's equation, locally one-dimensional scheme, stability, convergence of difference scheme, sum approximation method
UDC 519.63
MSC 35L35
DOI 10.35634/vm220402
Received 26 July 2022
Language Russian
Citation Beshtokov M.Kh. Finite-difference method for solving a multidimensional pseudoparabolic equation with boundary conditions of the third kind, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2022, vol. 32, issue 4, pp. 502-527.
References
  1. Sveshnikov A.A., Al'shin A.B., Korpusov M.O., Pletner Yu.D. Lineinye i nelineinye uravneniya sobolevskogo tipa (Linear and nonlinear Sobolev-type equations), Moscow: Fizmatlit, 2007.
  2. Barenblatt G.I., Zheltov Iu.P., Kochina I.N. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata], Journal of Applied Mathematics and Mechanics, 1960, vol. 24, issue 5, pp. 1286-1303. https://doi.org/10.1016/0021-8928(60)90107-6
  3. Dzekcer E.S. Equation of motion of underground water with a free surface in multilayer media, Soviet Physics. Doklady, 1975, vol. 20, pp. 24-26. https://zbmath.org/?q=an:0331.76056
  4. Rubinshtein L.I. On a question about the propagation of heat in heterogeneous media, Izvestiya Akad. Nauk SSSR. Ser. Geograf. Geofiz., 1948, vol. 12, issue 1, pp. 27-45 (in Russian). https://mathscinet.ams.org/mathscinet-getitem?mr=24020
  5. Ting T.W. A cooling process according to two-temperature theory of heat conduction, Journal of Mathematical Analysis and Applications, 1974, vol. 45, issue 1, pp. 23-31. https://doi.org/10.1016/0022-247X(74)90116-4
  6. Hallaire M. Le potentiel efficace de l'eau dans le sol en régime de dessèchement, L'eau et la production végétale, Paris: Institut national de la recherche agronomique, 1964, no. 9, pp. 27-62.
  7. Chudnovskii A.F. Teplofizika pochv (Thermal physics of soils), Moscow: Nauka, 1976.
  8. Kanchukoev V.Z. Boundary-value problems for equations of pseudoparabolic and mixed hyperbolic-pseudoparabolic types and their applications to the calculation of heat and mass transfer in soils, SAPR i ASPR v melioratsii (CAD and ASPR in melioration), Nalchick: 1983, pp. 131-138 (in Russian).
  9. Kochina N.N. Regulation of the level of ground waters during irrigation, Soviet Physics. Doklady, 1973, vol. 18, pp. 689-691. https://zbmath.org/?q=an:0303.73085
  10. Nakhushev A.M., Borisov V.N. Boundary value problems for loaded parabolic equations and their applications to the prediction of ground water level, Differentsial'nye Uravneniya, 1977, vol. 13, no. 1, pp. 105-110 (in Russian). http://mi.mathnet.ru/eng/de2971
  11. Colton D. Pseudoparabolic equations in one space variable, Journal of Differential Equations, 1972, vol. 12, issue 3, pp. 559-565. https://doi.org/10.1016/0022-0396(72)90025-3
  12. Coleman B.D., Duffin R.J., Mizel V.J. Instability, uniqueness, and nonexistence theorems for the equation $u_{t}=u_{xx}-u_{xtx}$ on a strip, Archive for Rational Mechanics and Analysis, 1965, vol. 19, issue 2, pp. 100-116. https://doi.org/10.1007/BF00282277
  13. Shkhanukov M.Kh. Some boundary value problems for a third-order equation that arise in the modeling of the filtration of a fluid in porous media, Differentsial'nye Uravneniya, 1982, vol. 18, no. 4, pp. 689-699 (in Russian). http://mi.mathnet.ru/eng/de4523
  14. Showalter R.E., Ting T.W. Pseudoparabolic partial differential equations, SIAM Journal on Mathematical Analysis, 1970, vol. 1, no. 1, pp. 1-26. https://doi.org/10.1137/0501001
  15. Ting T.W. Certain non-steady flows of second-order fluids, Archive for Rational Mechanics and Analysis, 1963, vol. 14, issue 1, pp. 1-26. https://doi.org/10.1007/BF00250690
  16. Beshtokov M.Kh. Riemann method for solving non-local boundary value problems for the third order pseudoparabolic equations, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 2013, issue 4 (33), pp. 15-24 (in Russian). https://doi.org/10.14498/vsgtu1238
  17. Beshtokov M.Kh. Finite-difference method for a nonlocal boundary value problem for a third-order pseudoparabolic equation, Differential Equations, 2013, vol. 49, issue 9, pp. 1134-1141. https://doi.org/10.1134/S0012266113090085
  18. Jachimavičienė J., Sapagovas M., Štikonas A., Štikonienė O. On the stability of explicit finite difference schemes for a pseudoparabolic equation with nonlocal conditions, Nonlinear Analysis: Modelling and Control, 2014, vol. 19, no. 2, pp. 225-240. https://doi.org/10.15388/NA.2014.2.6
  19. Amiraliyev G.M., Cimen E., Amirali I., Cakir M. High-order finite difference technique for delay pseudo-parabolic equations, Journal of Computational and Applied Mathematics, 2017, vol. 321, pp. 1-7. https://doi.org/10.1016/j.cam.2017.02.017
  20. Beshtokov M.Kh. On the numerical solution of a nonlocal boundary value problem for a degenerating pseudoparabolic equation, Differential Equations, 2016, vol. 52, issue 10, pp. 1341-1354. https://doi.org/10.1134/S0012266116100104
  21. Beshtokov M.Kh. The third boundary value problem for loaded differential Sobolev type equation and grid methods of their numerical implementation, IOP Conference Series: Materials Science and Engineering, 2016, vol. 158, 012019. https://doi.org/10.1088/1757-899x/158/1/012019
  22. Beshtokov M.Kh. Boundary value problems for degenerating and nondegenerating Sobolev-type equations with a nonlocal source in differential and difference forms, Differential Equations, 2018, vol. 54, issue 2, pp. 250-267. https://doi.org/10.1134/S0012266118020118
  23. Beshtokov M.Kh. Numerical analysis of initial-boundary value problem for a Sobolev-type equation with a fractional-order time derivative, Computational Mathematics and Mathematical Physics, 2019, vol. 59, issue 2, pp. 175-192. https://doi.org/10.1134/S0965542519020052
  24. Beshtokov M.Kh. Boundary value problems for a loaded modified fractional-order moisture transfer equation with the Bessel operator and difference methods for their solution, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2020, vol. 30, issue 2, pp. 158-175. https://doi.org/10.35634/vm200202
  25. Mesloub S., Bachar I. On a nonlocal 1-D initial value problem for a singular fractional-order parabolic equation with Bessel operator, Advances in Difference Equations, 2019, vol. 2019, article number: 254. https://doi.org/10.1186/s13662-019-2196-z
  26. Luc N.H., Jafari H., Kumam P., Tuan N.H. On an initial value problem for time fractional pseudo-parabolic equation with Caputo derivative, Mathematical Methods in the Applied Sciences, 2021. https://doi.org/10.1002/mma.7204
  27. Čiegis R., Tumanova N. On construction and analysis of finite difference schemes for pseudoparabolic problems with nonlocal boundary conditions, Mathematical Modelling and Analysis, 2014, vol. 19, issue 2, pp. 281-297. https://doi.org/10.3846/13926292.2014.910562
  28. Čiegis R., Suboč O., Bugajev A. Parallel algorithms for three-dimensional parabolic and pseudoparabolic problems with different boundary conditions, Nonlinear Analysis: Modelling and Control, 2014, vol. 19, issue 3, pp. 382-395. https://doi.org/10.15388/NA.2014.3.5
  29. Hussain M., Haq S., Ghafoor A. Meshless RBFs method for numerical solutions of two-dimensional high order fractional Sobolev equations, Computers and Mathematics with Applications, 2020, vol. 79, issue 3, pp. 802-816. https://doi.org/10.1016/j.camwa.2019.07.033
  30. Aslefallah M., Abbasbandy S., Shivanian E. Meshless singular boundary method for two-dimensional pseudo-parabolic equation: analysis of stability and convergence, Journal of Applied Mathematics and Computing, 2020, vol. 63, issues 1-2, pp. 585-606. https://doi.org/10.1007/s12190-020-01330-x
  31. Ablabekov B.S., Baiserkeeva A.B. Explicit solution of Cauchy problem for two-dimensional pseudoparabolic equations, Izvestiya Vysshih Uchebnyh Zavedeniy Kyrgyzstana, 2015, no. 10, pp. 3-7 (in Russian).
  32. Ablabekov B.S., Mukanbetova A.T. On solvability of solutions of the second initial-boundary problem for pseudoparabolic equations with a small parameter, Science, New Technologies and Innovations in Kyrgyzstan, 2019, no. 3, pp. 41-47 (in Russian).
  33. Beshtokov M.Kh. A numerical method for solving the second initial-boundary value problem for a multidimensional third-order pseudoparabolic equation, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2021, vol. 31, issue 3, pp. 384-408 (in Russian). https://doi.org/10.35634/vm210303
  34. Il'in A.M. Differencing scheme for a differential equation with a small parameter affecting the highest derivative, Mathematical Notes of the Academy of Sciences of the USSR, 1969, vol. 6, issue 2, pp. 596-602. https://doi.org/10.1007/BF01093706
  35. Ignat'ev V.N., Zadorin A.I. On bad conditionality in the numerical solution of equations with a small parameter, Preprint of the Computing Center of the Siberian Branch of the USSR Academy of Sciences. Novosibirsk. 1981. Vol. 84.
  36. Lukashchuk S.Yu. Approximation of ordinary fractional differential equations by differential equations with a small parameter, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2017, vol. 27, issue 4, pp. 515-531 (in Russian). https://doi.org/10.20537/vm170403
  37. Vishik M.I., Lyusternik L.A. Regular degeneration and boundary layer for linear differential equations with small parameter, Uspekhi Matematicheskikh Nauk, 1957, vol. 12, issue 5 (77), pp. 3-122 (in Russian). http://mi.mathnet.ru/eng/umn7705
  38. Godunov S.K., Ryaben'kii V.S. Raznostnye skhemy (Difference schemes), Moscow: Nauka, 1977.
  39. Ladyzhenskaya O.A. Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti (Mathematical questions of the dynamics of a viscous incompressible fluid), Moscow: Nauka, 1970.
  40. Ladyzhenskaya O.A., Seregin G.A. On one method of approximation of initial boundary value problems for the Navier-Stokes equations, Journal of Mathematical Sciences, 1995, vol. 75, issue 6, pp. 2038-2057. https://doi.org/10.1007/BF02362945
  41. Temam R. Navier-Stokes equations. Theory and numerical analysis, Amsterdam: North-Holland, 1977.
  42. Samarskii A.A. The theory of difference schemes, Boca Raton: CRC Press, 2001. https://doi.org/10.1201/9780203908518
  43. Ladyzhenskaya O.A. Kraevye zadachi matematicheskoi fiziki (Boundary value problems of mathematical physics), Moscow: Nauka, 1973.
  44. Samarskii A.A., Gulin A.V. Ustoichivost' raznostnykh skhem (Stability of difference schemes), Moscow: Nauka, 1973.
Full text
<< Previous article
Next article >>