phone +7 (3412) 91 60 92

Archive of Issues


Russia Izhevsk
Year
2022
Volume
32
Issue
4
Pages
644-660
<<
Section Mechanics
Title Numerical analysis of the periodic controls of an aquatic robot
Author(-s) Vetchanin E.V.a, Mamaev I.S.a
Affiliations Udmurt State Universitya
Abstract A model governing the motion of an aquatic robot with a shell in the form of a symmetrical airfoil NACA0040 is considered. The motion is controlled by periodic oscillations of the rotor. It is numerically shown that for physically admissible values of the control parameters in the phase space of the system, there exists only one limit cycle. The limit cycle that occurs under symmetric control corresponds to the motion of the robot near a straight line. In the case of asymmetric controls, the robot moves near a circle. An algorithm for controlling the course of the robot motion is proposed. This algorithm uses determined limit cycles and transient processes between them.
Keywords motion in a fluid, aquatic robot, control algorithm, limit cycles
UDC 532.3, 517.933
MSC 70E60, 37N35
DOI 10.35634/vm220410
Received 20 October 2022
Language Russian
Citation Vetchanin E.V., Mamaev I.S. Numerical analysis of the periodic controls of an aquatic robot, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2022, vol. 32, issue 4, pp. 644-660.
References
  1. Arnold V.I. Matematicheskie metody klassicheskoi mekhaniki (Mathematical methods of classical mechanics), Moskow: Nauka, 1989.
  2. Artemova E.M., Vetchanin E.V. Control of the motion of a circular cylinder in an ideal fluid using a source, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2020, vol. 30, issue 4, pp. 604-617. https://doi.org/10.35634/vm200405
  3. Kilin A.A., Karavaev Y.L., Klekovkin A.V. Kinematic control of a high manoeuvrable mobile spherical robot with internal omni-wheeled platform, Nelineinaya Dinamika, 2014, vol. 10, no. 1, pp. 113-126. https://doi.org/10.20537/nd1401008
  4. Kilin A.A., Karavaev Y.L. The kinematic control model for a spherical robot with an unbalanced internal omniwheel platform, Nelineinaya Dinamika, 2014, vol. 10, no. 4, pp. 497-511. https://doi.org/10.20537/nd1404009
  5. Klekovkin A.V. Simulation of the motion of a propellerless mobile robot controlled by rotation of the internal rotor, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2020, vol. 30, issue 4, pp. 645-656. https://doi.org/10.35634/vm200408
  6. Martynenko Yu.G., Formal'skii A.M. The theory of the control of a monocycle, Journal of Applied Mathematics and Mechanics, 2005, vol. 69, issue 4, pp. 516-528. https://doi.org/10.1016/j.jappmathmech.2005.07.003
  7. Artemova E.M., Karavaev Yu.L., Mamaev I.S., Vetchanin E.V. Dynamics of a spherical robot with variable moments of inertia and a displaced center of mass, Regular and Chaotic Dynamics, 2020, vol. 25, issue 6, pp. 689-706. https://doi.org/10.1134/S156035472006012X
  8. Artemova E.M., Kilin A.A. Dynamics and control of a three-link wheeled vehicle, 2020 International Conference Nonlinearity, Information and Robotics (NIR), 2020. https://doi.org/10.1109/NIR50484.2020.9290222
  9. Bizyaev I.A., Borisov A.V., Mamaev I.S. Dynamics of a Chaplygin sleigh with an unbalanced rotor: regular and chaotic motions, Nonlinear Dynamics, 2019, vol. 98, issue 3, pp. 2277-2291. https://doi.org/10.1007/s11071-019-05325-7
  10. Bizyaev I.A., Bolotin S.V., Mamaev I.S. Normal forms and averaging in an acceleration problem in nonholonomic mechanics, Chaos: An Interdisciplinary Journal of Nonlinear Science, 2021, vol. 31, issue 1, 013132. https://doi.org/10.1063/5.0030889
  11. Bizyaev I.A., Borisov A.V., Kuznetsov S.P. The Chaplygin sleigh with friction moving due to periodic oscillations of an internal mass, Nonlinear Dynamics, 2019, vol. 95, issue 1, pp. 699-714. https://doi.org/10.1007/s11071-018-4591-5
  12. Borisov A.V., Kilin A.A., Karavaev Y.L., Klekovkin A.V. Stabilization of the motion of a spherical robot using feedbacks, Applied Mathematical Modelling, 2019, vol. 69, pp. 583-592. https://doi.org/10.1016/j.apm.2019.01.008
  13. Ivanova T.B., Kilin A.A., Pivovarova E.N. Controlled motion of a spherical robot with feedback. I, Journal of Dynamical and Control Systems, 2018, vol. 24, issue 3, pp. 497-510. https://doi.org/10.1007/s10883-017-9387-2
  14. Ivanova T.B., Kilin A.A., Pivovarova E.N. Controlled motion of a spherical robot with feedback. II, Journal of Dynamical and Control Systems, 2019, vol. 25, issue 1, pp. 1-16. https://doi.org/10.1007/s10883-017-9390-7
  15. Karavaev Y.L., Klekovkin A.V., Mamaev I.S., Tenenev V.A., Vetchanin E.V. A simple physical model for control of an propellerless aquatic robot, Journal of Mechanisms and Robotics, 2022, vol. 14, issue 1, 011007. https://doi.org/10.1115/1.4051240
  16. Kilin A.A., Pivovarova E.N. Motion control of the spherical robot rolling on a vibrating plane, Applied Mathematical Modelling, 2022, vol. 109, pp. 492-508. https://doi.org/10.1016/j.apm.2022.05.002
  17. Kilin A.A., Pivovarova E.N. Stability and stabilization of steady rotations of a spherical robot on a vibrating base, Regular and Chaotic Dynamics, 2020, vol. 25, issue 6, pp. 729-752. https://doi.org/10.1134/S1560354720060155
  18. Mamaev I.S., Vetchanin E.V. Dynamics of rubber Chaplygin sphere under periodic control, Regular and Chaotic Dynamics, 2020, vol. 25, issue 2, pp. 215-236. https://doi.org/10.1134/S1560354720020069
  19. Murray R.M., Sastry S.S. Nonholonomic motion planning: steering using sinusoids, IEEE Transactions on Automatic Control, 1993, vol. 38, issue 5, pp. 700-716. https://doi.org/10.1109/9.277235
  20. Pollard B., Tallapragada P. An aquatic robot propelled by an internal rotor, IEEE/ASME Transactions on Mechatronics, 2016, vol. 22, issue 2, pp. 931-939. https://doi.org/10.1109/TMECH.2016.2630998
  21. Putkaradze V., Rogers S. On the dynamics of a rolling ball actuated by internal point masses, Meccanica, 2018, vol. 53, issue 15, pp. 3839-3868. https://doi.org/10.1007/s11012-018-0904-5
  22. Vetchanin E.V., Mikishanina E.A. Vibrational stability of periodic solutions of the Liouville equations, Nelineinaya Dinamika, 2019, vol. 15, issue 3, pp. 351-363. https://doi.org/10.20537/nd190312
Full text
<< Previous article