phone +7 (3412) 91 60 92

Archive of Issues


Ukraine Dnepr; Donetsk
Year
2022
Volume
32
Issue
2
Pages
298-318
<<
>>
Section Mechanics
Title New classes of particular solutions to one problem on gyrostat motion
Author(-s) Zyza A.V.a, Khomyak T.V.b, Platonova E.S.a
Affiliations Donetsk National Universitya, National Technical University Dnipro Polytechnicb
Abstract The paper studies the existence of two new classes of polynomial solutions to differential equations related to the problem of the gyrostat motion with a fixed point in the magnetic field, taking into account the Barnett–London effect. A common feature of the structure of these classes is that the functions that set the invariance relations for the unit vector components of the symmetry axis of the active force fields are either rational functions of the first component of the specified vector or of the auxiliary variable. Three new particular solutions to the polynomial classes under consideration are constructed. These solutions are described by the functions obtained by the inversion of hyperelliptic integrals. It has been proved that another constructed solution of the polynomial structures under study, for which the movement of the gyrostat has the property of precession, is a particular case of a known solution.
Keywords Kirchhoff–Poisson equations, Barnett–London effect, gyrostat, polynomial solution, invariance relation
UDC 531.38
MSC 70E05, 70E17, 70E40
DOI 10.35634/vm220209
Received 2 March 2022
Language Russian
Citation Zyza A.V., Khomyak T.V., Platonova E.S. New classes of particular solutions to one problem on gyrostat motion, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2022, vol. 32, issue 2, pp. 298-318.
References
  1. Kharlamov P.V. Lektsii po dinamike tverdogo tela (Lectures on solid dynamics), Novosibirsk: Novosibirsk State University, 1965.
  2. Gashenenko I.N., Gorr G.V., Kovalev A.M. Klassicheskie zadachi dinamiki tverdogo tela (Classical problems of solid dynamics), Kiev: Naukova Dumka, 2012.
  3. Gorr G.V., Maznev A.V. Dinamika girostata, imeyushchego nepodvizhnuyu tochku (Dynamics of a gyrostat with a fixed point), Donetsk: Donetsk National University, 2010.
  4. Thomson W. On the motion of rigid solids in a liquid circulating irrotationally through perforations in them or in any fixed solid, Proceedings of the Royal Society of Edinburgh, 1872, vol. 7, pp. 668-682. https://doi.org/10.1017/S0370164600042875
  5. Volterra V. Sur la théorie des variations des latitudes, Acta Mathematica, 1899, vol. 22, pp. 201-357. https://doi.org/10.1007/bf02417877
  6. Zhukovskii N.E. On the motion of a solid body having cavities filled with a homogeneous dropping liquid, Sobranie sochinenii. Tom 1 (Collected works, vol. 1), Moscow: Gostekhteorizdat, 1949, pp. 31-152 (in Russian).
  7. Gray A. A treatise on gurostatics and rotational motion, New York: Dover, 1959.
  8. Levi-Civita T., Amaldi U. Lezioni di meccanica razionale. Volume secondo. Dinamica dei sistemi con un numero finito di gradi di libertá. Parte Seconda, Bologna: Nicola Zanichelli, 1927.
  9. Rumyantsev V.V. On orientation control and satellite stabilization by rotors, Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 1970, no. 2, pp. 83-96 (in Russian). https://zbmath.org/?q=an:0207.23402
  10. Kharlamov P.V. On the equations of motion of a system of solids, Mekhanika Tverdogo Tela. Issue 4. Respublikanskii mezhvedomstvennyi sbornik, Kiev: Naukova dumka, 1972, pp. 52-73 (in Russian).
  11. Kharlamov P.V. On the invariant relations of a system of differential equations, Mekhanika Tverdogo Tela. Issue 6. Respublikanskii mezhvedomstvennyi sbornik, Kiev: Naukova dumka, 1974, pp. 15-24 (in Russian).
  12. Gorr G.V. On three invariant relations of the equations of motion of a body in a potential field of force, Mechanics of Solids, 2019, vol. 54, no. 2, pp. 234-244. https://doi.org/10.3103/S0025654419030105
  13. Gorr G.V. An approach in studying gyrostat motion with variable gyrostatic moment, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2021, vol. 31, issue 1, pp. 102-115 (in Russian). https://doi.org/10.35634/vm210108
  14. Gorr G.V., Tkachenko D.N., Shchetinina E.K. Research on the motion of a body in a potential force field in the case of three invariant relations, Russian Journal of Nonlinear Dynamics, 2019, vol. 15, no. 3, p. 327-342. https://doi.org/10.20537/nd190310
  15. Ol'shanskii V.Yu. Linear invariant relations of Kirchhoff's equations, Journal of Applied Mathematics and Mechanics, 2015, vol. 79, issue 4, pp. 334-349. https://doi.org/10.1016/j.jappmathmech.2016.01.004
  16. Ol'shanskii V.Yu. Construction of linear invariant relations of Kirchhoff equations, Mechanics of Solids, 2019, vol. 54, no. 1, pp. 70-80. https://doi.org/10.3103/S0025654419010060
  17. Doroshin A.V. Analytical solutions for dynamics of dual-spin spacecraft and gyrostat-satellites under magnetic attitude control in omega-regimes, International Journal of Non-Linear Mechanics, 2017, vol. 96, pp. 64-74. https://doi.org/10.1016/j.ijnonlinmec.2017.08.004
  18. Doroshin A.V. Regimes of regular and chaotic motion of gyrostats in the central gravity field, Communications in Nonlinear Science and Numerical Simulation, 2019, vol. 69, pp. 416-431. https://doi.org/10.1016/j.cnsns.2018.10.004
  19. Aslanov V.S. A note on the “Exact solutions for angular motion of coaxial bodies and attitude dynamics of gyrostat-satellites”, International Journal of Non-Linear Mechanics, 2014, vol. 58, pp. 305-306. https://doi.org/10.1016/j.ijnonlinmec.2013.10.007
  20. Yehia H.M., El-kenani H.N. Effect of the gravity and magnetic field to find regular precessions of a satellite-gyrostat with principal axes on a circular orbit, Journal of Applied and Computational Mechanics, 2021, vol. 7, issue 4, pp. 2120-2128. https://doi.org/10.22055/jacm.2021.37913.3113
  21. El-Sabaa F.M., Amer T.S., Sallam A.A., Abady I.M. Modeling and analysis of the nonlinear rotatory motion of an electromagnetic gyrostat, Alexandria Engineering Journal, 2021, vol. 61, issue 2, pp. 1625-1641. https://doi.org/10.1016/j.aej.2021.06.066
  22. Yehia H.M. New solvable problems in the dynamics of a rigid body about a fixed point in a potential field, Mechanics Research Communications, 2014, vol. 57, pp. 44-48. https://doi.org/10.1016/j.mechrescom.2014.02.005
  23. Yehia H.M., Saleh E., Megahid S.F. New solutions of classical problems in rigid body dynamics, Mechanics Research Communications, 2015, vol. 69, pp. 40-44. https://doi.org/10.1016/j.mechrescom.2015.05.007
  24. Yehia H.M., Elmandouh A.A. A new conditional integrable case in the dynamics of a rigid body-gyrostat, Mechanics Research Communications, 2016, vol. 78, part A, pp. 25-27. https://doi.org/10.1016/j.mechrescom.2016.09.007
  25. Amer T.S., Amer W.S. Substantial condition for the fourth first integral of the rigid body problem, Mathematics and Mechanics of Solids, 2018, vol. 23, issue 8, pp. 1237-1246. https://doi.org/10.1177/1081286517716733
  26. Amer T.S., Farag A.M., Amer W.S. The dynamical motion of a rigid body for the case of ellipsoid inertia close to ellipsoid of rotation, Mechanics Research Communications, 2020, vol. 108, 103583. https://doi.org/10.1016/j.mechrescom.2020.103583
  27. Doroshin A.V. Exact solutions for angular motion of coaxial bodies and attitude dynamics of gyrostat-satellites, International Journal of Non-Linear Mechanics, 2013, vol. 50, pp. 68-74. https://doi.org/10.1016/j.ijnonlinmec.2012.10.012
  28. Aslanov V., Yudintsev V. Dynamics and chaos control of gyrostat satellite, Chaos, Solitons and Fractals, 2012, vol. 45, issues 9-10, pp. 1100-1107. https://doi.org/10.1016/j.chaos.2012.06.008
  29. Barnett S.J. Gyromagnetic and electron-inertia effects, Reviews of Modern Physics, 1935, vol. 7, issue 2, pp. 129-166. https://doi.org/10.1103/revmodphys.7.129
  30. London F. Superfluids. Vol. 1. Macroscopic theory of superconductivity, New York: Wiley, 1950.
  31. Kittel Ch. Introduction to solid state physics, New York: Wiley, 2005.
  32. Ziglin S.L. Branching of solutions and nonexistence of first integrals in Hamiltonian mechanics. I, Functional Analysis and Its Applications, 1982, vol. 16, issue 3, pp. 181-189. https://doi.org/10.1007/BF01081586
  33. Samsonov V.A. On the rotation of a solid in a magnetic field, Izvestiya Akademii Nauk SSSR. Mekhanika Tverdogo Tela, 1984, no. 6, pp. 32-34 (in Russian).
  34. Kozlov V.V. To the problem of rotation of a solid body in a magnetic field, Izvestiya Akademii Nauk SSSR. Mekhanika Tverdogo Tela, 1985, no. 6, pp. 28-33 (in Russian).
  35. Kharlamov P.V. The current state and prospects for the development of the classical problems of solid state dynamics, Mekhanika Tverdogo Tela, 2000, issue 30, pp. 1-12 (in Russian).
  36. Klen F., Sommerfeld A. Über die Theorie des Kreisels. Heft 4, Leipzig: Teubner, 1965.
  37. Zyza A.V. Computer studies of polynomial solutions for gyrostat dynamics, Komp'yuternye Issledovaniya i Modelirovanie, 2018, vol. 10, no. 1, pp. 7-25 (in Russian). https://doi.org/10.20537/2076-7633-2018-10-1-7-25
  38. Zyza A.V. On generalized N. Kovalevski equations in two problems of rigid body dynamics, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2019, vol. 29, issue 1, pp. 73-83 (in Russian). https://doi.org/10.20537/vm190107
  39. Zyza A.V., Khomyak T.V. On one case of integrability of the motion equations of a rigid body in magnetic field, Vestnik Donetskogo Natsional'nogo Universiteta. Seriya A: Estestvennye Nayki, 2012, issue 2, pp. 31-35 (in Russian).
  40. Borisov A.V., Tsiganov A.V. The motion of a nonholonomic Chaplygin sphere in a magnetic field, the Grioli problem, and the Barnett-London effect, Doklady Physics, 2020, vol. 65, issue 3, pp. 90-93. https://doi.org/10.1134/s1028335820030052
Full text
<< Previous article
Next article >>