phone +7 (3412) 91 60 92

Archive of Issues

Russia Yekaterinburg
Section Mathematics
Title On a local synthesis problem for nonlinear systems with integral constraints
Author(-s) Gusev M.I.a, Osipov I.O.a
Affiliations Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciencesa
Abstract The paper considers the problem of leading a nonlinear control system to the origin of coordinates at a given integral control resource on a finite time interval. We investigate the question of the construction of local control synthesis that solves the problem, assuming that the time interval during which the system is moved is sufficiently small. We indicate sufficient conditions under which the problem can be solved by the approximate replacement of the nonlinear system by its linearization in the neighborhood of the origin.
Keywords nonlinear system, controllability set, integral constraints, linearization, Bellman equation, local synthesis, small-time, asymptotics
UDC 517.977.1
MSC 93B03
DOI 10.35634/vm220202
Received 28 December 2021
Language Russian
Citation Gusev M.I., Osipov I.O. On a local synthesis problem for nonlinear systems with integral constraints, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2022, vol. 32, issue 2, pp. 171-186.
  1. Krasovskii N.N. Problemy stabilizatsii upravlyaemykh dvizhenii (Problems of stabilizing controlled movements). Editor's addendum to the book of Malkin I.G., Theoriya ustoichivosti dvizheniya (Theory of motion stability). Moscow: Nauka, 1966, pp. 475-514.
  2. Al'brekht E.G., Shelement'ev G.S. Lektsii po teorii stabilizatsii (Lectures on stabilization theory), Sverdlovsk: Ural State University, 1972.
  3. Khalil H.K. Nonlinear systems, Pearson, 2002.
  4. Polyak B.T., Khlebnikov M.V., Rapoport L.B. Matematicheskaya teoriya avtomaticheskogo upravleniya (Mathematical theory of automatic control). Moscow: LENAND, 2019.
  5. Zykov I.V. On external estimates of reachable sets of control systems with integral constraints, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2019, vol. 53. pp. 61-72 (in Russian).
  6. Gusev M.I., Zykov I.V. On extremal properties of the boundary points of reachable sets for control systems with integral constraints, Proceedings of the Steklov Institute of Mathematics, 2018, vol. 300, suppl. 1, pp. 114-125.
  7. Atans M., Falb P. Optimal control, New York: McGraw-Hill, 1966.
  8. Pervozvanskii A.A. Kurs teorii avtomaticheskogo upravleniya (Course in automatic control theory). Moscow: Nauka, 1986.
  9. Abgaryan K.A. Matrichnoe ischislenie s prilozheniyami v teorii dinamicheskikh sistem (Matrix calculus with applications in the theory of dynamical systems), Moscow: Fizmatlit, 1994.
  10. Kurzhanski A.B., Varaiya P. Dynamics and control of trajectory tubes. Theory and computation, Cham: Birkhäuser, 2014.
  11. Gusev M.I. On convexity of reachable sets of a nonlinear system under integral constraints, IFAC-PapersOnLine, 2018, vol. 51, issue 32, pp. 207-212.
  12. Osipov I.O. On the convexity of the reachable set with respect to a part of coordinates at small time intervals, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternue Nauki, 2021, vol. 31, issue 2, pp. 210-225.
  13. Gusev M.I., Osipov I.O. Asymptotic behavior of reachable sets on small time intervals, Proceedings of the Steklov Institute of Mathematics, 2020, vol. 309, suppl. 1, pp. 52-64.
  14. Gusev M.I. Estimates of the minimal eigenvalue of the controllability Gramian for a system containing a small parameter, Mathematical Optimization Theory and Operations Research, Cham: Springer, 2019, pp. 461-473.
  15. Krener A., Schättler H. The structure of small-time reachable sets in low dimensions, SIAM Journal on Control and Optimization, 1989, vol. 27, issue 1, pp. 120-147.
  16. Schättler H. Small-time reachable sets and time-optimal feedback control, Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control, New York: Springer, 1996, pp. 203-225.
  17. Walter W. Differential and integral inequalities, Berlin: Springer, 1970.
Full text
<< Previous article
Next article >>