phone +7 (3412) 91 60 92

Archive of Issues


Russia Nizhni Novgorod
Year
2022
Volume
32
Issue
1
Pages
130-149
<<
Section Mathematics
Title On totally global solvability of evolutionary equation with monotone nonlinear operator
Author(-s) Chernov A.V.ab
Affiliations Nizhni Novgorod State Technical Universitya, Nizhni Novgorod State Universityb
Abstract Let $V$ be a separable reflexive Banach space being embedded continuously in a Hilbert space $H$ and dense in it; $X=L_p(0,T;V)\cap L_{p_0}(0,T;H)$; $U$ be a given set of controls; $A\colon X\to X^*$ be a given Volterra operator which is radially continuous, monotone and coercive (and, generally speaking, nonlinear). For the Cauchy problem associated with controlled evolutionary equation as follows $$x^\prime+Ax=f[u](x),\quad x(0)=a\in H;\quad x\in W=\{x\in X\colon x^\prime\in X^*\},$$ where $u\in U$ is a control, $f[u]\colon \mathbf{C}(0,T;H)\to X^*$ is Volterra operator ($W\subset\mathbf{C}(0,T;H)$), we prove totally (with respect to a set of admissible controls) global solvability subject to global solvability of some functional integral inequality in the space $\mathbb{R}$. In many particular cases the above inequality may be realized as the Cauchy problem associated with an ordinary differential equation. In fact, a similar result proved by the author earlier for the case of linear operator $A$ and identity $V=H=V^*$ is developed. Separately, we consider the cases of compact embedding of spaces, strengthening of the monotonicity condition and coincidence of the triplet of spaces $V=H=H^*$. As to the last two cases, we prove also the uniqueness of the solution. In the first case we use Schauder theorem and in the last two cases we apply the technique of continuation of solution along with the time axis (i.e., continuation along with a Volterra chain). Finally, we give some examples of an operator $A$ satisfying our conditions.
Keywords strongly nonlinear evolutionary equation in a Banach space, monotone nonlinear operator, totally global solvability
UDC 517.957, 517.988, 517.977.56
MSC 47J05, 47J35, 47N10
DOI 10.35634/vm220109
Received 7 September 2021
Language Russian
Citation Chernov A.V. On totally global solvability of evolutionary equation with monotone nonlinear operator, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2022, vol. 32, issue 1, pp. 130-149.
References
  1. Chernov A.V. On total preservation of solvability of controlled Hammerstein-type equation with non-isotone and non-majorizable operator, Russian Mathematics, 2017, vol. 61, no. 6, pp. 72-81. https://doi.org/10.3103/S1066369X1706010X
  2. Chernov A.V. A majorant criterion for the total preservation of global solvability of controlled functional operator equation, Russian Mathematics, 2011, vol. 55, no. 3, pp. 85-95. https://doi.org/10.3103/S1066369X11030108
  3. Kalantarov V.K., Ladyzhenskaya O.A. The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types, Journal of Soviet Mathematics, 1978, vol. 10, no. 1, pp. 53-70. https://doi.org/10.1007/BF01109723
  4. Sumin V.I. The features of gradient methods for distributed optimal-control problems, USSR Computational Mathematics and Mathematical Physics, 1990, vol. 30, no. 1, pp. 1-15. https://doi.org/10.1016/0041-5553(90)90002-A
  5. Sumin V.I. Funktsional'nye vol'terrovy uravneniya v teorii optimal'nogo upravleniya raspredelennymi sistemami. Chast' I (Functional Volterra equations in the theory of optimal control of distributed systems. Part I), Nizhny Novgorod: N.I. Lobachevsky State University of Nizhny Novgorod, 1992.
  6. Lions J.-L. Contrôle des systèmes distribués singuliers, Paris: Gauthier-Villars, 1983. https://zbmath.org/?q=an:0514.93001
  7. Fursikov A.V. Optimal control of distributed systems. Theory and applications, Providence, RI: American Mathematical Society, 2000. https://zbmath.org/?q=an:1027.93500
  8. Plotnikov V.I., Sumin V.I. Optimization of distributed systems in Lebesgue space, Siberian Mathematical Journal, 1981, vol. 22, no. 6, pp. 913-929. https://doi.org/10.1007/BF00968060
  9. Chernov A.V. On the convergence of the conditional gradient method in distributed optimization problems, Computational Mathematics and Mathematical Physics, 2011, vol. 51, no. 9, pp. 1510-1523. https://doi.org/10.1134/S0965542511090077
  10. Gajewski H., Gröger K., Zacharias K. Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Berlin: Akademie-Verlag, 1974. https://zbmath.org/?q=an:0289.47029
  11. Lions J.-L. Quelques méthodes de résolution des problèmes aux limites non linéaires, Paris: Dunod, 1969. https://zbmath.org/?q=an:0189.40603
  12. Kobayashi T., Pecher H., Shibata Y. On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity, Mathematische Annalen, 1993, vol. 296, no. 1, pp. 215-234. https://doi.org/10.1007/BF01445103
  13. Lu G. Global existence and blow-up for a class of semilinear parabolic systems: a Cauchy problem, Nonlinear Analysis: Theory, Methods and Applications, 1995, vol. 24, no. 8, pp. 1193-1206. https://doi.org/10.1016/0362-546X(94)00190-S
  14. Cavalcanti M.M., Domingos Cavalcanti V.N., Soriano J.A. On existence and asymptotic stability of solutions of the degenerate wave equation with nonlinear boundary conditions, Journal of Mathematical Analysis and Applications, 2003, vol. 281, no. 1, pp. 108-124. https://doi.org/10.1016/S0022-247X(02)00558-9
  15. Saito H. Global solvability of the Navier-Stokes equations with a free surface in the maximal $L_p$-$L_q$ regularity class, Journal of Differential Equations, 2018, vol. 264, no. 3, pp. 1475-1520. https://doi.org/10.1016/j.jde.2017.09.045
  16. Chernov A.V. On totally global solvability of evolutionary equation with unbounded operator, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2021, vol. 31, issue 2, pp. 331-349 (in Russian). https://doi.org/10.35634/vm210212
  17. Zeidler E. Nonlinear functional analysis and its applications. II/B: Nonlinear monotone operators, New York: Springer, 1990. https://zbmath.org/?q=an:0684.47029
  18. Vulikh B.Z. Kurzer Lehrgang der Theorie der Funktionen einer reellen Veränderlichen, Moscow: Nauka, 1965. https://zbmath.org/?q=an:0142.30203
  19. Kantorovich L.V., Akilov G.P. Functional analysis, Oxford: Pergamon Press, 1982. https://zbmath.org/?q=an:0484.46003
  20. Sobolev S.L. Some applications of functional analysis in mathematical physics, Providence, RI: American Mathematical Society, 1991. https://zbmath.org/?q=an:0732.46001
  21. Pavlova M.F., Timerbaev M.R. Prostranstva Soboleva (teoremy vlozheniya) (Sobolev spaces (embedding theorems)), Kazan: Kazan Federal University, 2010.
Full text
<< Previous article