phone +7 (3412) 91 60 92

Archive of Issues


Russia Gorno-Altaisk
Year
2022
Volume
32
Issue
1
Pages
62-80
<<
>>
Section Mathematics
Title On local extension of the group of parallel translations in three-dimensional space
Author(-s) Kyrov V.A.a
Affiliations Gorno-Altaisk State Universitya
Abstract In this paper, we solve the problem of extending the group of parallel translations of a three-dimensional space to a locally boundedly sharply doubly transitive Lie group of transformations of the same space. Local bounded sharply double transitivity means that there is a single transformation that takes an arbitrary pair of non-coincident points from some open neighborhood to almost any pair of points from the same neighborhood. In this article, the problem posed is solved for two cases related to Jordan forms of third-order matrices. These matrices are used to write systems of linear differential equations, whose solutions lead to the basic operators of a six-dimensional linear space. Requiring the closedness of the commutators of these operators, we select the Lie algebras. Checking also the condition of local bounded sharply double transitivity, we obtain the Lie algebras of locally boundedly sharply doubly transitive Lie groups of transformations of a three-dimensional space with a subgroup of parallel translations. As a result, three Lie algebras are obtained, two of which can be represented as a half-line sum of a commutative three-dimensional ideal and a three-dimensional Lie subalgebra, and the third one decomposes into a half-line sum of a commutative three-dimensional ideal and a subalgebra isomorphic to $sl(2,R)$.
Keywords Lie group of transformations, locally boundedly sharply doubly transitive Lie group of transformations, Lie algebra, Jordan form of a matrix
UDC 512.816.3
MSC 22E99
DOI 10.35634/vm220105
Received 19 September 2021
Language Russian
Citation Kyrov V.A. On local extension of the group of parallel translations in three-dimensional space, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2022, vol. 32, issue 1, pp. 62-80.
References
  1. Deré J., Origlia M. Simply transitive NIL-affine actions of solvable Lie groups, Forum Mathematicum, 2021, vol. 33, issue 5, pp. 1349-1367. https://doi.org/10.1515/forum-2020-0114
  2. Bădiţoiu G. Classification of homogeneous Einstein metrics on pseudo-hyperbolic spaces, Transformation Groups, 2020, vol. 25, issue 2, pp. 335-361. https://doi.org/10.1007/s00031-020-09556-6
  3. Globke W. On compact homogeneous $G_{2(2)}$-manifolds, Journal of the Australian Mathematical Society, 2021, vol. 110, issue 1, pp. 71-80. https://doi.org/10.1017/S1446788719000296
  4. Belliart M. A differentiable classification of certain locally free actions of Lie groups, Israel Journal of Mathematics, 2018, vol. 224, issue 1, pp. 315-342. https://doi.org/10.1007/s11856-018-1649-5
  5. Arvanitoyeorgos A., Souris N.P., Statha M. Geodesic orbit metrics in a class of homogeneous bundles over quaternionic Stiefel manifolds, Journal of Geometry and Physics, 2021, vol. 165, 104223. https://doi.org/10.1016/j.geomphys.2021.104223
  6. Magazev A.A. Constructing a complete integral of the Hamilton-Jacobi equation on pseudo-Riemannian spaces with simply transitive groups of motions, Mathematical Physics, Analysis and Geometry, 2021, vol. 24, no. 2, article number: 11. https://doi.org/10.1007/s11040-021-09385-3
  7. Avdeev R. On extended weight monoids of spherical homogeneous spaces, Transformation Groups, 2021, vol. 26, no. 2, pp. 403-431. https://doi.org/10.1007/s00031-021-09642-3
  8. Peraza J., Paternain M., Reisenberger M. On the classical and quantum Geroch group, Classical and Quantum Gravity, 2021, vol. 38, no. 1, p. 015013. https://doi.org/10.1088/1361-6382/abc6ba
  9. Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E. Exact solutions of Einstein's field equations, Cambridge: Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511535185
  10. Gorbatsevich V.V. Extension of transitive actions of Lie groups, Izvestiya: Mathematics, 2017, vol. 81, no. 6, pp. 1143-1154. https://doi.org/10.1070/IM8506
  11. Barbot T., Maquera C. Nil-Anosov actions, Mathematische Zeitschrift, 2017, vol. 287, no. 3-4, pp. 1279-1305. https://doi.org/10.1007/s00209-017-1868-1
  12. Tits J. Sur les groupes doublement transitifs continus, Commentarii Mathematici Helvetici, 1952, vol. 26, pp. 203-224 (in French). http://eudml.org/doc/139046
  13. Tits J. Sur les groupes doublement transitifs continus: correction et compléments, Commentarii Mathematici Helvetici, 1956, vol. 30, pp. 234-240 (in French). http://eudml.org/doc/139124
  14. Kramer L. Two-transitive Lie groups, Journal für die reine und angewandte Mathematik, 2003, no. 563, pp. 83-113. https://doi.org/10.1515/crll.2003.085
  15. Glasner Y., Gulko D.D. Non-split linear sharply 2-transitive groups, Proceedings of the American Mathematical Society, 2021, vol. 149, no. 6, pp. 2305-2317. https://doi.org/10.1090/proc/15360
  16. Kakkar V., Lal R., Lal R., Yadav A.C. Generalized right near domains and sharply 2-transitive groups, Journal of Algebra and Its Applications, 2021, vol. 20, no. 10, pp. 2150176. https://doi.org/10.1142/S0219498821501760
  17. Mikhailichenko G.G. Gruppovaya simmetriya fizicheskikh struktur (Group symmetry of physical structures), Barnaul: Barnaul State Pedagogical Institute, 2003.
  18. Kyrov V.A. To the question of local extension of the parallel translations group of three-dimensional space, Vladikavkazskii Matematicheskii Zhurnal, 2021, vol. 23, issue 1, pp. 32-47 (in Russian). https://doi.org/10.46698/q6524-1245-2359-m
  19. Fels M., Olver P.J. Moving coframes: I. A practical algorithm, Acta Applicandae Mathematicae, 1998, vol. 51, no. 2, pp. 161-213. https://doi.org/10.1023/A:1005878210297
  20. Fels M., Olver P.J. Moving coframes: II. A practical algorithm, Acta Applicandae Mathematicae, 1999, vol. 55, no. 2, pp. 127-208. https://doi.org/10.1023/A:1006195823000
  21. Shirokov I.V. Constructing Lie algebras of first-order differential operators, Russian Physics Journal, 1997, vol. 40, issue 6, pp. 525-530. https://doi.org/10.1007/BF02766382
  22. Kyrov V.A., Mikhailichenko G.G. Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank $(3,2)$, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2018, vol. 28, issue 3, pp. 305-327 (in Russian). https://doi.org/10.20537/vm180304
  23. Bredon G.E. Introduction to compact transformation groups, New York: Academic Press, 1972.
  24. Ovsyannikov L.V. Gruppovoi analiz differentsial'nykh uravnenii (Group analysis of differential equations), Moscow: Nauka, 1978.
  25. Morozov V.V. Classification of nilpotent Lie algebras of the sixth order, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1958, no. 4, pp. 161-171 (in Russian). http://mi.mathnet.ru/eng/ivm2960
  26. Mubarakzyanov G.M. On solvable Lie algebras, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1963, no. 1, pp. 114-123 (in Russian). http://mi.mathnet.ru/eng/ivm2141
  27. Mubarakzyanov G.M. Classification of solvable Lie algebras of sixth order with a non-nilpotent basis element, Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1963, no. 4, pp. 104-116 (in Russian). http://mi.mathnet.ru/eng/ivm8672
  28. Turkowski P. Solvable Lie algebras of dimension six, Journal of Mathematical Physics, 1990, vol. 31, issue 6, pp. 1344-1350. http://doi.org/10.1063/1.528721
  29. Turkowski P. Low-dimensional real Lie algebras, Journal of Mathematical Physics, 1988, vol. 29, issue 10, pp. 2139-2144. http://doi.org/10.1063/1.528140
Full text
<< Previous article
Next article >>