phone +7 (3412) 91 60 92

Archive of Issues


India Chennai
Year
2021
Volume
31
Issue
4
Pages
640-650
<<
>>
Section Mathematics
Title Infinite Schrödinger networks
Author(-s) Nathiya N.a, Amulya Smyrna C.a
Affiliations Vellore Institute of Technology Chennaia
Abstract Finite-difference models of partial differential equations such as Laplace or Poisson equations lead to a finite network. A discretized equation on an unbounded plane or space results in an infinite network. In an infinite network, Schrödinger operator (perturbed Laplace operator, $q$-Laplace) is defined to develop a discrete potential theory which has a model in the Schrödinger equation in the Euclidean spaces. The relation between Laplace operator $\Delta$-theory and the $\Delta_q$-theory is investigated. In the $\Delta_q$-theory the Poisson equation is solved if the network is a tree and a canonical representation for non-negative $q$-superharmonic functions is obtained in general case.
Keywords $q$-harmonic functions, $q$-superharmonic functions, Schrödinger network, hyperbolic Schrödinger network, parabolic Schrödinger network, integral representation
UDC 517
MSC 31C20, 31A05, 31A10
DOI 10.35634/vm210408
Received 7 May 2021
Language English
Citation Nathiya N., Amulya Smyrna C. Infinite Schrödinger networks, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2021, vol. 31, issue 4, pp. 640-650.
References
  1. Carmona Á., Encinas A.M., Mitjana M. Potential theory on finite networks, Electronic Notes in Discrete Mathematics, 2014, vol. 46, pp. 113-120. https://doi.org/10.1016/j.endm.2014.08.016
  2. Gantmacher F.R. The theory of matrices. Vol. 1, New York: Chelsea Publishing Company, 1964.
  3. Royden H.L. The equation $\Delta u = Pu$, and the classification of open Riemann surfaces, Annales Academiae Scientiarum Fennicae. Series A I, 1959, vol. 271, pp. 1-26. https://zbmath.org/?q=an:0096.05803
  4. Cartier P. Fonctions harmoniques sur un arbre, Symposia Mathematica, 1972, vol. 9, pp. 203-270 (in French). https://zbmath.org/?q=an:0283.31005
  5. Yamasaki M. Discrete Dirichlet potentials on an infinite network (Potential theory and its related fields), Institute of Mathematical Analysis, Kyoto University, 1987, vol. 610, pp. 51-66. http://hdl.handle.net/2433/99750
  6. Soardi P.M. Potential theory on infinite networks, Berlin: Springer, 1994. https://doi.org/10.1007/BFb0073995
  7. Cohen J.M., Colonna F., Singman D. The distribution of radial eigenvalues of the Euclidean Laplacian on homogeneous isotropic trees, Complex Analysis and its Synergies, 2021, vol. 7, no. 2, article 21. https://doi.org/10.1007/s40627-021-00071-2
  8. Soardi P.M., Woess W. Uniqueness of currents in infinite resistive networks, Discrete Applied Mathematics, 1991, vol. 31, no. 1, pp. 37-49. https://doi.org/10.1016/0166-218X(91)90031-Q
  9. Picardello M.A., Woess W. Martin boundaries of Cartesian products of Markov chains, Nagoya Mathematical Journal, 1992, vol. 128, pp. 153-169. https://doi.org/10.1017/s0027763000004256
  10. Anandam V. Harmonic functions and potentials on finite or infinite networks, Berlin: Springer, 2011. https://doi.org/10.1007/978-3-642-21399-1
  11. Abodayeh K., Anandam V. Potential-theoretic study of functions on an infinite network, Hokkaido Mathematical Journal, 2008, vol. 37, no. 1, pp. 59-73. https://doi.org/10.14492/hokmj/1253539587
  12. Hedenmalm H., Montes-Rodríguez A. Heisenberg uniqueness pairs and the Klein-Gordon equation, Annals of Mathematics, 2011, vol. 173, no. 3, pp. 1507-1527. https://doi.org/10.4007/annals.2011.173.3.6
  13. Alyusof R., Colonna F. Weighted composition operators from Banach spaces of holomorphic functions to weighted-type Banach spaces on the unit ball in $C$$n$ , Complex Analysis and Operator Theory, 2020, vol. 14, no. 1, article 3. https://doi.org/10.1007/s11785-019-00965-4
  14. Simon B. Operator theory: a comprehensive course in analysis. Part 4, Providence: American Mathematical Society, 2015. https://doi.org/10.1090/simon/004
  15. Colonna F., Tjani M. Essential norms of weighted composition operators from reproducing kernel Hilbert spaces into weighted-type spaces, Houston Journal of Mathematics, 2016, vol. 42, no. 3, pp. 877-903. https://zbmath.org/?q=an:1360.47004
  16. Colonna F., Tjani M. Operator norms and essential norms of weighted composition operators between Banach spaces of analytic functions, Journal of Mathematical Analysis and Application, 2016, vol. 434, no. 1, pp. 93-124. https://doi.org/10.1016/j.jmaa.2015.08.073
  17. Anandam V., Damlakhi M. Perturbed Laplace operators on finite networks, Revue Roumaine de Mathématiques Pures et Appliquées, 2016, vol. 61, no. 2, pp. 75-92. https://zbmath.org/?q=an:1399.35147
  18. Bendito E., Carmona Á., Encinas A.M. Potential theory for Schrödinger operators on finite networks, Revista Matemática Iberoamericana, 2005, vol. 21, no. 3, pp. 717-818. https://doi.org/10.4171/rmi/435
  19. Premalatha, Nathiya N. Unique integral represetation for the class of balanced separately superharmonic functions in a product network, Mathematical Reports, 2016, vol. 18 (68), no. 3, pp. 299-313. https://zbmath.org/?q=an:1389.31015
  20. Abodayeh K., Anandam V. Quasi-bounded supersolutions of discrete Schrödinger equations, Applied Mathematical Sciences, 2016, vol. 10, no. 34, pp. 1693-1704. https://doi.org/10.12988/ams.2016.63111
  21. Abodayeh K., Anandam V. Schrödinger networks and their Cartesian products, Mathematical Methods in the Applied Sciences, 2020, vol. 44, no. 6, pp. 4342-4347. https://doi.org/10.1002/mma.7034
Full text
<< Previous article
Next article >>