phone +7 (3412) 91 60 92

Archive of Issues


Uzbekistan Tashkent
Year
2021
Volume
31
Issue
3
Pages
365-383
<<
>>
Section Mathematics
Title Asymptotic distribution of hitting times for critical maps of the circle
Author(-s) Ayupov Sh.A.a, Zhalilov A.A.ab
Affiliations Institute of Mathematics, National Academy of Sciences of Uzbekistana, Yeoju Technical Institute in Tashkentb
Abstract It is well known that the renormalization group transformation $\mathcal{R}$ has a unique fixed point $f_{cr}$ in the space of critical $C^{3}$-circle homeomorphisms with one cubic critical point $x_{cr}$ and the golden mean rotation number $\overline{\rho}:=\frac{\sqrt{5}-1}{2}.$ Denote by $Cr(\overline{\rho})$ the set of all critical circle maps $C^{1}$-conjugated to $f_{cr}.$ Let $f\in Cr(\overline{\rho})$ and let $\mu:=\mu_{f}$ be the unique probability invariant measure of $f.$ Fix $\theta \in(0,1).$ For each $n\geq1$ define $c_{n}:=c_{n}(\theta)$ such that $\mu([x_{cr},c_{n}])=\theta\cdot\mu([x_{cr},f^{q_{n}}(x_{cr})]),$ where $q_{n}$ is the first return time of the linear rotation $f_{\overline{\rho}}.$ We study convergence in law of rescaled point process of time hitting. We show that the limit distribution is singular w.r.t. the Lebesgue measure.
Keywords circle homeomorphism, critical point, rotation number, hitting time, thermodynamic formalism
UDC 517.9
MSC 37A05, 28D05
DOI 10.35634/vm210302
Received 24 February 2021
Language English
Citation Ayupov Sh.A., Zhalilov A.A. Asymptotic distribution of hitting times for critical maps of the circle, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2021, vol. 31, issue 3, pp. 365-383.
References
  1. de Faria E., de Melo W. Rigidity of critical circle mappings. I, Journal of the European Mathematical Society, 1999, vol. 1, issue 4, pp. 339-392. https://doi.org/10.1007/s100970050011
  2. Ostlund R., Rand D., Sethna J., Siggia E. Universal properties of the transition from quasi-periodicity to chaos in dissipative systems, Physica D: Nonlinear Phenomena, 1983, vol. 8, issue 3, pp. 303-342. https://doi.org/10.1016/0167-2789(83)90229-4
  3. Lanford O.E., III, de la Llave R. Solution of the functional equation for critical circle mappings with golden rotation number, Manuscript, 1984.
  4. Epstein H. Fixed points of composition operators. II, Nonlinearity, 1989, vol. 2, no. 2, pp. 305-310. https://doi.org/10.1088/0951-7715/2/2/006
  5. de Melo W., van Strien S. One-dimensional dynamics, Berlin: Springer, 1993. https://doi.org/10.1007/978-3-642-78043-1
  6. Mestel B. A computer assisted proof of universality for Cubic critical maps of the circle with Golden mean rotation number, PhD thesis, University of Warwick, 1984.
  7. Lanford O.E., III. Functional equations for circle homeomorphisms with golden ratio rotation number, Journal of Statistical Physics, 1984, vol. 34, no. 1-2, pp. 57-73. https://doi.org/10.1007/BF01770349
  8. Yoccoz J.-Ch. Il n'y a pas de contre-exemple de Denjoy analytique, Comptes Rendus de l'Académie des Sciences. Série I Mathématique, 1984, vol. 298, no. 7, pp. 141-144. https://zbmath.org/?q=an:0573.58023
  9. Graczyk J., Światek G. Singular measures in circle dynamics, Communications in Mathematical Physics, 1993, vol. 157, no. 2, pp. 213-230. https://doi.org/10.1007/BF02099758
  10. Guarino P., Martens M., de Melo W. Rigidity of critical circle maps, Duke Mathematical Journal, 2018, vol. 167, no. 11, pp. 2125-2188. https://doi.org/10.1215/00127094-2018-0017
  11. Coelho Z., de Faria E. Limit laws of entrance times for homeomorphisms of the circle, Israel Journal of Mathematics, 1996, vol. 93, no. 1, pp. 93-112. https://doi.org/10.1007/BF02761095
  12. Coelho Z. The loss of tightness of time distributions for homeomorphisms of the circle, Transactions of the American Mathematical Society, 2004, vol. 356, no. 11, pp. 4427-4445. https://doi.org/10.1090/S0002-9947-04-03386-0
  13. Kim D.H., Seo B.K. The waiting time for irrational rotations, Nonlinearity, 2003, vol. 16, no. 5, pp. 1861-1868. https://doi.org/10.1088/0951-7715/16/5/318
  14. Katznelson Y., Ornstein D. The absolute continuity of the conjugation of certain diffeomorphisms of the circle, Ergodic Theory and Dynamical Systems, 1989, vol. 9, no. 4, pp. 681-690. https://doi.org/10.1017/S0143385700005289
  15. Pitskel B. Poisson limit law for Markov chains, Ergodic Theory and Dynamical Systems, 1991, vol. 11, no. 3, pp. 501-513. https://doi.org/10.1017/S0143385700006301
  16. Bowen R.E. Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Berlin: Springer, 2008. https://doi.org/10.1007/978-3-540-77695-6
  17. Collet P., Galves A. Asymptotic distribution of entrance times for expanding maps of the interval, Dynamical Systems and Applications, World Scientific, 1995, pp. 139-152. https://doi.org/10.1142/9789812796417_0011
  18. Vul E.B., Sinai Ya.G., Khanin K.M. Feigenbaum universality and the thermodynamic formalism, Russian Mathematical Surveys, 1984, vol. 39, no. 3, pp. 1-40. https://doi.org/10.1070/RM1984v039n03ABEH003162
  19. Dzhalilov A.A. Thermodynamic formalism and singular invariant measures for critical circle maps, Theoretical and Mathematical Physics, 2003, vol. 134, no. 2, pp. 166-180. https://doi.org/10.1023/A:1022271903129
  20. Ruelle D. Thermodynamic formalism. The mathematical structure of equilibrium statistical mechanics, Cambridge: Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511617546
  21. Dzhalilov A.A. Limiting laws for entrance times of critical mappings of a circle, Theoretical and Mathematical Physics, 2004, vol. 138, no. 2, pp. 190-207. https://doi.org/10.1023/B:TAMP.0000014851.67668.fb
Full text
<< Previous article
Next article >>