phone +7 (3412) 91 60 92

Archive of Issues

Kazakhstan Almaty; Shymkent
Section Mathematics
Title On nonlocal perturbation of the problem on eigenvalues of differentiation operator on a segment
Author(-s) Imanbaev N.S.ab
Affiliations Institute of Mathematics and Mathematical Modeling, Kazakhstana, South Kazakhstan State Pedagogical Universityb
Abstract This work is devoted to the construction of a characteristic polynomial of the spectral problem of a first-order differential equation on an interval with a spectral parameter in a boundary value condition with integral perturbation which is an entire analytic function of the spectral parameter. Based on the characteristic polynomial formula, conclusions about the asymptotics of the spectrum of the perturbed spectral problem are established.
Keywords differentiation operator, boundary value conditions, integral perturbation, function of bounded variation, characteristic polynomial, entire functions, zeros, eigenvalues, asymptotics
UDC 517.927.5
MSC 35M10, 35M20
DOI 10.35634/vm210202
Received 28 February 2021
Language English
Citation Imanbaev N.S. On nonlocal perturbation of the problem on eigenvalues of differentiation operator on a segment, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2021, vol. 31, issue 2, pp. 186-193.
  1. Bellman R., Cook K. Differential-difference equations, New York-London: Academic Press, 1963.
    Translated under the title Differentsial'no-raznostnye uravneniya, Moscow: Mir, 1967.
  2. Braichev G.G. Sharp estimates of types of entire functions with zeros on rays, Mathematical Notes, 2015, vol. 97, no. 4, pp. 510-520.
  3. Braichev G.G., Sherstyukov V.B. Sharp bounds for asymptotic characteristics of growth of entire functions with zeros on given sets, Fundam. Prikl. Mat., 2018, vol. 22, issue 1, pp. 51-97 (in Russian).
  4. Cartwright M.L. The zeros of certain integral functions, The Quarterly Journal of Mathematics, 1930, vol. os-1, issue 1, pp. 38-59.
  5. Hald O.H. Discontinuous inverse eigenvalue problems, Communications on Pure and Applied Mathematics, 1984, vol. 37, issue 5, pp. 539-577.
  6. Imanbaev N.S. Distribution of eigenvalues of a third-order differential operator with strongly regular boundary conditions, AIP Conference Proceedings, 2018, vol. 1997, article number 020027.
  7. Imanbaev N.S. On stability of basis property of root vectors system of the Sturm-Liouville operator with an integral perturbation of conditions in nonstrongly regular Samarskii-Ionkin type problems, International Journal of Differential Equations, 2015, vol. 2015, article ID 641481.
  8. Imanbaev N.S. Stability of the basis property of eigenvalue systems of Sturm-Liouville operators with integral boundary condition, Electronic Journal of Differential Equations, 2016, vol. 2016, no. 87, pp. 1-8.
  9. Imanbaev N.S., Kanguzhin B.E., Kalimbetov B.T. On zeros of the characteristic determinant of the spectral problem for a third-order differential operator on a segment with nonlocal boundary conditions, Advances in Difference Equations, 2013, vol. 2013, article number 110.
  10. Imanbaev N., Kalimbetov B., Khabibullaev Zh. To the eigenvalue problems of a special-loaded first-order differential operator, International Journal of Mathematical Analysis, 2014, vol. 8, no. 45, pp. 2247-2254.
  11. Ishkin Kh.K., Marvanov R.I. On localization conditions for spectrum of model operator for Orr-Sommerfeld equation, Ufa Mathematical Journal, 2020, vol. 12, no. 4, pp. 64-77.
  12. Kritskov L.V. Uniform, on the entire axis, convergence of the spectral expansion for Schrödinger operator with a potential-distribution, Differential Equations, 2017, vol. 53, no. 2, pp. 180-191.
  13. Kudryavtsev L.D. Kratkii kurs matematicheskogo analiza (Short course in mathematical analysis), Moscow: Nauka, 1989.
  14. Levin B.Ja. Distribution of zeros of entire functions, Providence, R.I.: AMS, 1964.
    Original Russian text Raspredelenie kornei tselykh funktsii, Moscow: Gostexizdat, 1956.
  15. Leont'ev A.F. Tselye funktsii. Ryady eksponent (Entire functions. Exponential series), Moscow: Nauka, 1983.
  16. Lunyov A.A., Malamud M.M. On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications, Journal of Spectral Theory, 2015, vol. 5, issue 1, pp. 17-70.
  17. Malyutin K.G., Kabanko M.V. The meromorphic functions of completely regular growth on the upper half-plane, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2020, vol. 30, issue 3, pp. 396-409.
  18. Naimark M.A. Lineinye differentsial'nye operatory (Linear differential operators), Moscow: Fizmatlit, 2010.
  19. Riesz F., Szőkefalvi-Nagy B. Leçons d'analyse fonctionnele, Budapest: Akadémiai Kiadó, 1972.
    Translated under the title Lektsii po funktsional'nomu analizu, Moskow: Mir, 1979.
  20. Sadovnichii V.A., Lyubishkin V.A., Belabbasi Yu. On regularized sums of roots of an entire function of a certain class, Sov. Math., Dokl., 1980, vol. 22, pp. 613-616.
  21. Sadybekov M.A., Imanbaev N.S. Characteristic determinant of a boundary value problem, which does not have the basis property, Eurasian Math. J., 2017, vol. 8, no. 2, pp. 40-46.
  22. Sedletskii A.M. On the zeros of the Fourier transform of finite measure, Mathematical Notes, 1993, vol. 53, no. 1, pp. 77-84.
  23. Titchmarsh E.C. The zeros of certain integral functions, Proceedings of the London Mathematical Society, 1926, vol. s2-25, issue 1, pp. 283-302.
  24. Shabat B.V. Vvedeniye v kompleksnyi analiz. V 2 chastyakh. Chast' 1. Funktsii odnogo peremennogo (An introduction to complex analysis. In 2 parts. Part 1. Functions of one variable), Moscow: URSS, 2015.
  25. Sherstyukov V.B. Asymptotic properties of entire functions with given laws of distribution of zeros, Complex Analysis. Entire Functions and Their Applications. Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., vol. 161, Moscow: VINITI, 2019, pp. 104-129.
  26. Shkalikov A.A. The basis problem of the eigenfunctions of ordinary differential operators with integral boundary conditions, Moscow University Mathematics Bulletin, 1982, vol. 37, no. 6, pp. 10-20.
Full text
<< Previous article
Next article >>