phone +7 (3412) 91 60 92

Archive of Issues


Russia Nizhni Novgorod
Year
2021
Volume
31
Issue
2
Pages
331-349
<<
Section Mathematics
Title On totally global solvability of evolutionary equation with unbounded operator
Author(-s) Chernov A.V.ab
Affiliations Nizhni Novgorod State Technical Universitya, Nizhni Novgorod State Universityb
Abstract Let $X$ be a Hilbert space, $U$ be a Banach space, $G\colon X\to X$ be a linear operator such that the operator $B_\lambda=\lambda I-G$ is maximal monotone with some (arbitrary given) $\lambda\in\mathbb{R}$. For the Cauchy problem associated with controlled semilinear evolutionary equation as follows \[x^\prime(t)=Gx(t)+f\bigl( t,x(t),u(t)\bigr),\quad t\in[0;T];\quad x(0)=x_0\in X,\] where $u=u(t)\colon[0;T]\to U$ is a control, $x(t)$ is unknown function with values in $X$, we prove the totally (with respect to a set of admissible controls) global solvability subject to global solvability of the Cauchy problem associated with some ordinary differential equation in the space $\mathbb{R}$. Solution $x$ is treated in weak sense and is sought in the space $\mathbb{C}_w\bigl([0;T];X\bigr)$ of weakly continuous functions. In fact, we generalize a similar result having been proved by the author formerly for the case of bounded operator $G$. The essence of this generalization consists in that postulated properties of the operator $B_\lambda$ give us the possibility to construct Yosida approximations for it by bounded linear operators and thus to extend required estimates from “bounded” to “unbounded” case. As examples, we consider initial boundary value problems associated with the heat equation and the wave equation.
Keywords semilinear evolutionary equation in a Hilbert space, maximal monotone operator, totally global solvability
UDC 517.957, 517.988, 517.977.56
MSC 47J05, 47J35, 47N10
DOI 10.35634/vm210212
Received 28 August 2020
Language Russian
Citation Chernov A.V. On totally global solvability of evolutionary equation with unbounded operator, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2021, vol. 31, issue 2, pp. 331-349.
References
  1. Chernov A.V. A majorant criterion for the total preservation of global solvability of controlled functional operator equation, Russian Mathematics, 2011, vol. 55, no. 3, pp. 85-95. https://doi.org/10.3103/S1066369X11030108
  2. Kalantarov V.K., Ladyzhenskaya O.A. The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types, Journal of Soviet Mathematics, 1978, vol. 10, issue 1, pp. 53-70. https://doi.org/10.1007/BF01109723
  3. Sumin V.I. The features of gradient methods for distributed optimal control problems, USSR Computational Mathematics and Mathematical Physics, 1990, vol. 30, no. 1, pp. 1-15. https://doi.org/10.1016/0041-5553(90)90002-A
  4. Sumin V.I. Funktsional'nye vol'terrovy uravneniya v teorii optimal'nogo upravleniya raspredelennymi sistemami. Chast' I. Vol'terrovy uravneniya i upravlyaemye nachal'no-kraevye zadachi (Functional Volterra equations in the theory of optimal control of distributed systems. Part I. Volterra equations and controlled initial boundary value problems), Nizhny Novgorod: Nizhny Novgorod State University, 1992.
  5. Lions J.-L. Contrôle des systèmes distribués singuliers, Paris: Bordas, 1983. https://zbmath.org/?q=an:0514.93001
  6. Fursikov A.V. Optimal control of distributed systems. Theory and applications, Providence, RI: AMS, 2000. https://zbmath.org/?q=an:1027.93500
  7. Plotnikov V.I., Sumin V.I. Optimization of distributed systems in Lebesgue space, Siberian Mathematical Journal, 1981, vol. 22, no. 6, pp. 913-929. https://doi.org/10.1007/BF00968060
  8. Chernov A.V. On the convergence of the conditional gradient method in distributed optimization problems, Computational Mathematics and Mathematical Physics, 2011, vol. 51, no. 9, pp. 1510-1523. https://doi.org/10.1134/S0965542511090077
  9. Chernov A.V. On total preservation of solvability of controlled Hammerstein-type equation with non-isotone and non-majorizable operator, Russian Mathematics, 2017, vol. 61, no. 6, pp. 72-81. https://doi.org/10.3103/S1066369X1706010X
  10. Kobayashi T., Pecher H., Shibata Y. On a global in time existence theorem of smooth solutions to a nonlinear wave equation with viscosity, Mathematische Annalen, 1993, vol. 296, no. 2, pp. 215-234. https://doi.org/10.1007/BF01445103
  11. Lu G. Global existence and blow-up for a class of semilinear parabolic systems: a Cauchy problem, Nonlinear Analysis: Theory, Methods and Applications, 1995, vol. 24, no. 8, pp. 1193-1206. https://doi.org/10.1016/0362-546X(94)00190-S
  12. Cavalcanti M.M., Domingos Cavalcanti V.N., Soriano J.A. On existence and asymptotic stability of solutions of the degenerate wave equation with nonlinear boundary conditions, Journal of Mathematical Analysis and Applications, 2003, vol. 281, no. 1, pp. 108-124. https://doi.org/10.1016/S0022-247X(02)00558-9
  13. Saito H. Global solvability of the Navier-Stokes equations with a free surface in the maximal $L_p$-$L_q$ regularity class, Journal of Differential Equations, 2018, vol. 264, no. 3, pp. 1475-1520. https://doi.org/10.1016/j.jde.2017.09.045
  14. Sumin V.I. Optimization of controlled generalized Volterra systems, Cand. Sci. (Phys. and Math.) Dissertation, Gorkii, 1975, 158 p. (In Russian).
  15. Sumin V.I. On functional Volterra equations, Russian Mathematics, 1995, vol. 39, no. 9, pp. 65-75. https://zbmath.org/?q=an:0861.45004
  16. Sumin V.I. Functional Volterra equations in the mathematical theory of optimal control of distributed systems, Dr. Sci. (Phys. and Math.) Dissertation, Nizhny Novgorod, 1998, 346 p. (In Russian).
  17. Sumin V.I. Controlled functional Volterra equations in Lebesgue spaces, Vestnik Nizhegorodskogo Universiteta. Seriya Matematicheskoe Modelirovanie i Optimal'noe Upravlenie, 1998, no. 2 (19), pp. 138-151 (in Russian).
  18. Sumin V.I., Chernov A.V. Volterra operator equations in Banach spaces: the stability of existence of global solutions, NNSU, Nizhny Novgorod, 2000, 75 p. Deposited in VINITI 25.04.00, no. 1198-V00 (in Russian).
  19. Chernov A.V. Volterra operator equations and their application in the optimization theory of hyperbolic systems, Cand. Sci. (Phys. and Math.) Dissertation, Nizhny Novgorod, 2000, 177 p. (In Russian).
  20. Chernov A.V. A majorant-minorant criterion for the total preservation of global solvability of a functional operator equation, Russian Mathematics, 2012, vol. 56, no. 3, pp. 55-65. https://doi.org/10.3103/S1066369X12030085
  21. Chernov A.V. On total preservation of global solvability for a Goursat problem associated with a controlled semilinear pseudoparabolic equation, Vladikavkazskii Matematicheskii Zhurnal, 2014, vol. 16, no. 3, pp. 55-63 (in Russian). http://mi.mathnet.ru/eng/vmj513
  22. Chernov A.V. On the totally global solvability of a controlled Hammerstein type equation with a varied linear operator, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2015, vol. 25, issue 2, pp. 230-243 (in Russian). https://doi.org/10.20537/vm150207
  23. Chernov A.V. On a majorant-minorant criterion for the total preservation of global solvability of distributed controlled systems, Differential Equations, 2016, vol. 52, no. 1, pp. 111-121. https://doi.org/10.1134/S0012266116010092
  24. Sumin V.I. The problem of sustainability of existence global solutions of controlled boundary value problems and Volterra functional equations, Vestnik Nizhegorodskogo Universiteta. Matematika, 2003, no. 1, pp. 91-107 (in Russian). https://zbmath.org/?q=an:1067.49002
  25. Sumin V.I., Chernov A.V. Volterra functional-operator equations in the theory of optimization of distributed systems, Systems Dinamics and Control Processes (SDCP-2014): Proceedings of Int. Conf. Dedicated to the 90th Anniversary of the birth of Acad. N.N. Krasovskii, Yekaterinburg: UMTS UPI, 2015, pp. 293-300 (in Russian).
  26. Sumin V.I. Controlled Volterra functional equations and the contraction mapping principle, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2019, vol. 25, no. 1, pp. 262-278 (in Russian). https://doi.org/10.21538/0134-4889-2019-25-1-262-278
  27. Chernov A.V. Preservation of the solvability of a semilinear global electric circuit equation, Computational Mathematics and Mathematical Physics, 2018, vol. 58, no. 12, pp. 2018-2030. https://doi.org/10.1134/S0965542518120096
  28. Sumin V.I. Equiquasinilpotency: definitions, conditions, examples of application, Vestnik Tambovskogo Universiteta. Seriya Estestvennye i Tekhnicheskie Nauki, 2010, vol. 15, issue 1, pp. 453-466 (in Russian).
  29. Chernov A.V. On total preservation of global solvability of a differential operator equation, Prikladnaya Matematika i Voprosy Upravleniya, 2017, no. 2, pp. 94-111 (in Russian). https://elibrary.ru/item.asp?id=29675515
  30. Chernov A.V. On totally global solvability of controlled second kind operator equation, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2020, vol. 30, issue 1, pp. 92-111 (in Russian). https://doi.org/10.35634/vm200107
  31. Sumin V.I. Volterra functional-operator equations in the theory of optimal control of distributed systems, IFAC-PapersOnLine, 2018, vol. 51, issue 32, pp. 759-764. https://doi.org/10.1016/j.ifacol.2018.11.454
  32. Balakrishnan A.V. Applied functional analysis, New York-Heidelberg-Berlin: Springer-Verlag, 1976. https://zbmath.org/?q=an:0333.93051
  33. Hille E., Phillips R.S. Functional analysis and semi-groups, Providence, R.I.: American Mathematical Society (AMS), 1957. https://zbmath.org/?q=an:0078.10004
  34. *Funktsional'nyi analiz (Functional analysis) / S.G. Krein (Ed.), Moscow: Nauka, 1979.
  35. Gajewski H., Gröger K., Zacharias K. Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen (Nonlinear operator equations and operator differential equations), Berlin: Akademie, 1974. https://zbmath.org/?q=an:0289.47029
  36. Krein S.G. Lineinye differentsial'nye uravneniya v banakhovom prostranstve (Linear differential equations in a Banach space), Moscow: Nauka, 1967.
  37. Ramaswamy M., Shaiju A.J. Construction of approximate saddle-point strategies for differential games in a Hilbert space, Journal of Optimization Theory and Applications, 2009, vol. 141, issue 2, pp. 349-370. https://doi.org/10.1007/s10957-008-9478-z
  38. Dautray R., Lions J.-L. Mathematical analysis and numerical methods for science and technology. Vol. 5. Evolution problems, Berlin: Springer-Verlag, 1992. https://zbmath.org/?q=an:0755.35001
  39. Brezis H. Functional analysis, Sobolev spaces and partial differential equations, New York: Springer, 2011. https://doi.org/10.1007/978-0-387-70914-7
Full text
<< Previous article