phone +7 (3412) 91 60 92

Archive of Issues


Uzbekistan Tashkent
Year
2021
Volume
31
Issue
2
Pages
296-310
<<
>>
Section Mathematics
Title Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton
Author(-s) Khudayberganov G.a, Abdullayev J.Sh.a
Affiliations National University of Uzbekistana
Abstract The question of the possibility of holomorphic continuation into some domain of functions defined on the entire boundary of this domain has been well studied. The problem of describing functions defined on a part of the boundary that can be extended holomorphically into a fixed domain is attracting more interest. In this article, we reformulate the problem under consideration: Under what conditions can we extend holomorphically to a matrix ball the functions given on a part of its skeleton? We describe the domains into which the integral of the Bochner—Hua Luogeng type for a matrix ball can be extended holomorphically. As the main result, we present the criterion of holomorphic continuation into a matrix ball of functions defined on a part of the skeleton of this matrix ball. The proofs of several results are briefly presented. Some recent advances are highlighted. The results obtained in this article generalize the results of L.A. Aizenberg, A.M. Kytmanov and G. Khudayberganov.
Keywords matrix ball, Shilov's boundary, Bochner–Hua Luogeng integral, Hardy space, holomorphic continuation, orthonormal system
UDC 517.55
MSC 32A10, 32A26, 32A40, 32M15, 46E20
DOI 10.35634/vm210210
Received 27 September 2020
Language English
Citation Khudayberganov G., Abdullayev J.Sh. Holomorphic continuation into a matrix ball of functions defined on a piece of its skeleton, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2021, vol. 31, issue 2, pp. 296-310.
References
  1. Aizenberg L.A. Formuly Karlemana v kompleksnom analize (Carleman formulas in complex analysis), Novosibirsk: Science, 1990.
  2. Khenkin G.M., Chirka E.M. Boundary properties of holomorphic functions of several complex variables, Journal of Soviet Mathematics, 1976, vol. 5, issue 5, pp. 612–687. https://doi.org/10.1007/BF01091908
  3. Aizenberg L.A., Kytmanov A.M. On the possibility of holomorphic extension into a domain of function defined on a connected piece of its boundary, Mathematics of the USSR-Sbornik, 1992, vol. 72, no. 2, pp. 467-483. http://doi.org/10.1070/SM1992v072n02ABEH002148
  4. Khudayberganov G. On the possibility of holomorphic continuation into a matrix domain of functions defined on a segment of its Shilov boundary, Doklady Mathematics, 1995, vol. 50, issue 3, pp. 497-499. http://mi.mathnet.ru/eng/dan4604
  5. Shaimkulov B.A. On holomorphic extendability of functions from part of the Lie sphere to the Lie ball, Siberian Mathematical Journal, 2003, vol. 44, issue 6, pp. 1105-1110. https://doi.org/10.1023/B:SIMJ.0000007486.06343.be
  6. Khudayberganov G., Kytmanov A.M., Shaimkulov B.A. Analiz v matrichnykh oblastyakh (Analysis in matrix domains), Krasnoyarsk: Siberian Federal University, 2017.
  7. Pinchuk S., Shafikov R., Sukhov A. Some aspects of holomorphic mappings: a survey, Proceedings of the Steklov Institute of Mathematics, 2017, vol. 298, no. 1, pp. 212-247. https://doi.org/10.1134/S0081543817060153
  8. Yurieva E.V. On the extension of analytic sets into a neighborhood of the edge of a wedge in nongeneral position, Journal of Siberian Federal University. Mathematics and Physics, 2013, vol. 6, issue 3, pp. 376-380. http://mi.mathnet.ru/eng/jsfu324
  9. Yurieva E.V. On the holomorphic extension into a neighborhood of the edge of a wedge in nongeneral position, Siberian Mathematical Journal, 2011, vol. 52, issue 3, pp. 563-568. https://doi.org/10.1134/S0037446611030190
  10. Krantz S.G. Harmonic and complex analysis in several variables, Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-63231-5
  11. Cartan E. Sur les domaines bornés homogènes de l'espace den variables complexes, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1935, vol. 11, issue 1, pp. 116-162. https://doi.org/10.1007/BF02940719
  12. Hua L.K. Harmonic analysis of functions of several complex variables in classical domains, AMS, 1963. https://bookstore.ams.org/mmono-6/
  13. Sergeev A.G. On matrix and Reinhardt domains, Stockholm: Mittag-Leffler Institute, 1988.
  14. Khudayberganov G., Khalknazarov A.M., Abdullayev J.Sh. Laplace and Hua Luogeng operators, Russian Mathematics, 2020, vol. 64, no. 3, pp. 66-74. https://doi.org/10.3103/S1066369X20030068
  15. Kosbergenov S. On a multidimensional boundary Morera theorem for the matrix ball, Russian Mathematics, 2001, vol. 45, no. 4, pp. 26-30.
  16. Kosbergenov S. On the Carleman formula for a matrix ball, Russian Mathematics, 1999, vol. 43, issue 1, pp. 72-75.
  17. Khudayberganov G.Kh., Rakhmonov U.S. The Bergman and Cauchy-Szegő kernels for matrix ball of the second type, Journal of Siberian Federal University. Mathematics and Physics, 2014, vol. 7, issue 3, pp. 305-310. http://mi.mathnet.ru/eng/jsfu375
  18. Khudayberganov G., Rakhmonov U.S., Matyakubov Z.Q. Integral formulas for some matrix domains, Contemporary Mathematics, 2016, pp. 89-95. https://doi.org/10.1090/conm/662/13318
  19. Khudayberganov G.Kh., Otemuratov B.P., Rakhmonov U.S. Boundary Morera theorem for the matrix ball of the third type, Journal of Siberian Federal University. Mathematics and Physics, 2018, vol. 11, issue 1, pp. 40-45. https://doi.org/10.17516/1997-1397-2018-11-1-40-45
  20. Khudayberganov G., Rakhmonov U.S. Carleman formula for matrix ball of the third type, USUZCAMP 2017: Algebra, Complex Analysis, and Pluripotential Theory, Springer Proceedings in Mathematics and Statistics, 2017, pp. 101-108. https://doi.org/10.1007/978-3-030-01144-4_9
  21. Rakhmonov U.S., Abdullayev J.Sh. On volumes of matrix ball of third type and generalized Lie balls, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2019, vol. 29, issue 4, pp. 548-557. https://doi.org/10.20537/vm190406
  22. Khudayberganov G.K., Abdullayev J.Sh. Relationship between the kernels Bergman and Cauchy–Szegő in the domains $\tau$ $+$ $\left(n-1\right)$ and $\Re_{IV}$$n$ , Journal of Siberian Federal University. Mathematics and Physics, 2020, vol. 13, issue 5, pp. 559-567. https://doi.org/10.17516/1997-1397-2020-13-5-559-567
  23. Myslivets S.G. On the Szegő and Poisson kernels in the convex domains in $\mathbb{C}$$n$ , Russian Mathematics, 2019, vol. 63, no. 1, pp. 35-41. https://doi.org/10.3103/S1066369X19010043
  24. Kytmanov A.M., Nikitina T.N. Analogs of Carleman's formula for classical domains, Mathematical notes of the Academy of Sciences of the USSR, 1989, vol. 45, issue 3, pp. 243-248. https://doi.org/10.1007/BF01158560
  25. Murnaghan F.D. Teoriya predstavlenii grupp (The theory of group representations), Moscow: Inostr. Lit., 1950.
  26. Weyl H. Klassicheskie gruppy (The classical groups), Moscow: Inostr. Lit., 1947.
  27. Jöricke B. Continuity of the Cauchy projection in Hölder norms for classical domains, Mathematische Nachrichten, 1983, vol. 113, issue 1, pp. 227-244 (in Russian). https://doi.org/10.1002/mana.19831120112
  28. Henkin G.M. The method of integral representations in complex analysis, Itogi Nauki i Tekhniki. Seriya “Sovremennye Problemy Matematiki. Fundamental'nye Napravleniya”, 1985, vol. 7, pp. 23-124. http://mi.mathnet.ru/eng/intf46
  29. Pinchuk S.I. Bogolyubov's theorem on the “edge of the wedge” for generic manifolds, Mathematics of the USSR-Sbornik, 1974, vol. 23, issue 3, pp. 441-455. http://doi.org/10.1070/SM1974v023n03ABEH001725
  30. Cartan H. Sur les fonctions de deux variables complexes et probleme de la representation analytique, Journal de Mathématiques Pures et Appliquées, 1931, ser. 9, 10, pp. 1-114.
Full text
<< Previous article
Next article >>