phone +7 (3412) 91 60 92

Archive of Issues


Russia Moscow
Year
2019
Volume
29
Issue
4
Pages
583-598
<<
>>
Section Mechanics
Title Influence of Bartnett-London and Einstein-de Haas effects on the motion of the nonholonomic sphere of Routh
Author(-s) Borisov A.V.a, Tsiganov A.V.a
Affiliations Steklov Mathematical Institute, Russian Academy of Sciencesa
Abstract We consider the rolling of an unbalanced dynamically symmetric ball along a plane without slipping in the presence of an external magnetic field. We assume that the ball may be wholly or partially composed of dielectric, ferromagnetic, or superconducting materials. According to the existing phenomenological theory, in this case, when studying the dynamics of a ball, it is required to take into account the Lorentz force moment, Barnett-London moment, and Einstein-de Haas moment. Within the framework of this mathematical model, we obtain the conditions for the existence of integrals of motion, which allow us to reduce the integration of equations of motion to a quadrature similar to the Lagrange quadrature for a heavy rigid body.
Keywords nonholonomic systems, magnetic field, integrable systems
UDC 531.011, 537.634
MSC 37J60, 70F25, 74F15
DOI 10.20537/vm190409
Received 1 November 2019
Language Russian
Citation Borisov A.V., Tsiganov A.V. Influence of Bartnett-London and Einstein-de Haas effects on the motion of the nonholonomic sphere of Routh, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2019, vol. 29, issue 4, pp. 583-598.
References
  1. Ampere A.M. Sur deux Mémoires lus par M. Ampère à l'Académie royale des Sciences, Journal de Physique, de Chimie et d'Histoire Naturelle, 1821, vol. 92, pp. 160-165.
  2. Barnett S.J. On magnetization by angular acceleration, Science, 1909, vol. 30, issue 769, pp. 413. https://doi.org/10.1126/science.30.769.413
  3. Barnett S.J. Magnetization by rotation, Physical Review, 1915, vol. 6, issue 4, pp. 239-270. https://doi.org/10.1103/PhysRev.6.239
  4. Barnett S.J. Gyromagnetic and electron-inertia effects, Reviews of Modern Physics, 1935, vol. 7, issue 2, pp. 129-166. https://doi.org/10.1103/RevModPhys.7.129
  5. Bai Y., Svinin M., Yamamoto M. Dynamics-based motion planning for a pendulum-actuated spherical rolling robot, Regular and Chaotic Dynamics, 2018, vol. 23, issue 4, pp. 372-388. https://doi.org/10.1134/S1560354718040020
  6. Becker R., Heller G., Sauter F. Über die Stromverteilung in einer supraleitenden Kugel, Zeitschrift für Physik, 1933, vol. 85, issue 11-12, pp. 772-787. https://doi.org/10.1007/BF01330324
  7. Bizayev I.A., Tsiganov A.V. On the Routh sphere problem, Journal of Physics A: Mathematical and Theoretical, 2013, vol. 46, issue 8, 085202. https://doi.org/10.1088/1751-8113/46/8/085202
  8. Bizyaev I.A. The inertial motion of a roller racer, Regular and Chaotic Dynamics, 2017, vol. 22, issue 3, pp. 239-247. https://doi.org/10.1134/S1560354717030042
  9. Bizyaev I.A., Borisov A.V., Mamaev I.S. The Chaplygin sleigh with parametric excitation: chaotic dynamics and nonholonomic acceleration, Regular and Chaotic Dynamics, 2017, vol. 22, issue 8, pp. 955-975. https://doi.org/10.1134/S1560354717080056
  10. Bizyaev I.A., Borisov A.V., Mamaev I.S. An invariant measure and the probability of a fall in the problem of an inhomogeneous disk rolling on a plane, Regular and Chaotic Dynamics, 2018, vol. 23, issue 6, pp. 665-684. https://doi.org/10.1134/S1560354718060035
  11. Bizyaev I.A., Borisov A.V., Mamaev I.S. Exotic dynamics of nonholonomic roller racer with periodic control, Regular and Chaotic Dynamics, 2018, vol. 23, issue 7-8, pp. 983-994. https://doi.org/10.1134/S1560354718070122
  12. Borisov A.V., Mamaev I.S., Tsiganov A.V. Non-holonomic dynamics and Poisson geometry, Russian Mathematical Surveys, 2014, vol. 69, no. 3, pp. 481-538. https://doi.org/10.1070/RM2014v069n03ABEH004899
  13. Borisov A.V., Mamaev I.S. Rigid body dynamics, De Gruyter Stud. Math. Phys., vol. 52, Berlin: De Gruyter, 2018.
  14. Borisov A.V., Kuznetsov S.P. Comparing dynamics initiated by an attached oscillating particle for the nonholonomic model of a Chaplygin sleigh and for a model with strong transverse and weak longitudinal viscous friction applied at a fixed point on the body, Regular and Chaotic Dynamics, 2018, vol. 23, issue 7-8, pp. 803-820. https://doi.org/10.1134/s1560354718070018
  15. Borisov A.V., Tsiganov A.V. On the Chaplygin sphere in a magnetic field, Regular and Chaotic Dynamics, 2019, vol. 24, issue 6, pp. 739-754. https://doi.org/10.1134/S156035471906011X
  16. Burov A.A., Subkhankulov G.I. On the motion of a solid in a magnetic field, Journal of Applied Mathematics and Mechanics, 1986, vol. 50, issue 6, pp. 743-748. https://doi.org/10.1016/0021-8928(86)90083-3
  17. Chaplygin S.A. On motion of heavy rigid body of revolution on horizontal plane, Collection of works: Vol. 1, Moscow-Leningrad: OGIZ, 1948, pp. 57-75.
  18. Jaafar R., Chudnovsky E.M., Garanin D.A. Dynamics of the Einstein-de Haas effect: Application to a magnetic cantilever, Physical Review B, 2009, vol. 79, issue 10, 104410. https://doi.org/10.1103/physrevb.79.104410
  19. Garanin D.A., Chudnovsky E.M. Angular momentum in spin-phonon processes, Physical Review B, 2015, vol. 92, issue 2, 024421. https://doi.org/10.1103/physrevb.92.024421
  20. Cushman R. Routh's sphere, Reports on Mathematical Physics, 1998, vol. 42, issue 1-2, pp. 47-70. https://doi.org/10.1016/S0034-4877(98)80004-9
  21. Einstein A. Experimenteller nachweis der ampèreschen molekularströme, Naturwissenschaften, 1915, vol. 3, issue 19, pp. 237-238. https://doi.org/10.1007/BF01546392
  22. Hildebrandt A.F. Magnetic field of a rotating superconductor, Physical Review Letters, 1964, vol. 12, issue 8, pp. 190-191. https://doi.org/10.1103/physrevlett.12.190
  23. Hirsch J.E. Moment of inertia of superconductors, Physics Letters A, 2019, vol. 383, issue 1, pp. 83-90. https://doi.org/10.1016/j.physleta.2018.09.031
  24. Hu S., Santoprete M. Suslov problem with the Clebsch-Tisserand potential, Regular and Chaotic Dynamics, 2018, vol. 23, issue 2, pp. 193-211. https://doi.org/10.1134/S1560354718020053
  25. Felderhof B.U. Self-propulsion of a spherical electric or magnetic microbot in a polar viscous fluid, Physical Review E, 2015, vol. 91, issue 2, 023014. https://doi.org/10.1103/physreve.91.023014
  26. Grioli G. Moto attorno al baricentro di un giroscopio soggetto a forze di potenza nulla, Univ. Roma Ist. Naz. Alta Mat. Rend. Mat. e Appl. (5), 1947, vol. 6, pp. 439-463.
  27. Grioli G. Sul moto di un corpo rigido asimmetrico soggetto a forze di potenza nulla, Rendiconti del Seminario Matematico della Università di Padova, 1957, vol. 27, pp. 90-102.
  28. Goldstein H. The classical motion of a rigid charged body in a magnetic field, American Journal of Physics, 1951, vol. 19, issue 2, pp. 100-109. https://doi.org/10.1119/1.1932721
  29. Jellet J.H. A treatise on the theory of friction, London: MacMillan, 1872.
  30. Kikoin I.K., Gubar S.W. Gyromagnetic effects in super conductors, J. Phys. USSR, 1940, vol. 3, pp. 333-354.
  31. Kilin A.A., Pivovarova E.N. The rolling motion of a truncated ball without slipping and spinning on a plane, Regular and Chaotic Dynamics, 2017, vol. 22, issue 3, pp. 298-317. https://doi.org/10.1134/S156035471703008X
  32. Kilin A.A., Pivovarova E.N. Integrable nonsmooth nonholonomic dynamics of a rubber wheel with sharp edges, Regular and Chaotic Dynamics, 2018, vol. 23, issue 7-8, pp. 887-907. https://doi.org/10.1134/S1560354718070067
  33. Kirchhoff G.R. Über die bewegung eines rotationskörpers in einer flüssigkeit, Journal für die Reine und Angewandte Mathematik (Crelles Journal), 1870, vol. 1870, issue 71, pp. 237-262. https://doi.org/10.1515/crll.1870.71.237
  34. Kobrin A.I., Martynenko Yu.G. Motion of a conducting solid body near the center of mass in a slowly varying magnetic field, Soviet Physics Doklady, 1981, vol. 26, no. 12, pp. 1134-1136.
  35. Kozlov V.V. Problem of the rotation of a solid body in a magnetic field, Izv. Akad. Nauk. Mekh. Tverd. Tela, 1985, vol. 20, no. 6, pp. 28-33 (in Russian).
  36. Kroh H.J., Felderhof B.U. Force and torque on a sphere with electric dipole moment moving in a dielectric fluid in the presence of a uniform magnetic field, Physica A: Statistical Mechanics and its Applications, 2000, vol. 280, issue 3-4, pp. 256-265. https://doi.org/10.1016/S0378-4371(00)00057-1
  37. Kuznetsov S.P. Regular and chaotic dynamics of a Chaplygin sleigh due to periodic switch of the nonholonomic constraint, Regular and Chaotic Dynamics, 2018, vol. 23, issue 2, pp. 178-192. https://doi.org/10.1134/S1560354718020041
  38. Lakshmanan M. The fascinating world of the Landau-Lifshitz-Gilbert equation: an overview, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, vol. 369, issue 1939, pp. 1280-1300. https://doi.org/10.1098/rsta.2010.0319
  39. Mentink J.H., Katsnelson M.I., Lemeshko M. Quantum many-body dynamics of the Einstein–de Haas effect, Physical Review B, 2019, vol. 99, issue 6, 064428. https://doi.org/10.1103/physrevb.99.064428
  40. Pry R.H., Lathrop A.L., Houston W.V. Gyromagnetic effect in a superconductor, Physical Review, 1952, vol. 86, issue 6, pp. 905-907. https://doi.org/10.1103/PhysRev.86.905
  41. Rowland H.A. Magnetic effect of electric convection, American Journal of Science, 1878, series 3, vol. 15, pp. 30-38. https://doi.org/10.2475/ajs.s3-15.85.30
  42. Richardson O.W. A mechanical effect accompanying magnetization, Physical Review, 1908, vol. 26, issue 3, pp. 248-253. https://doi.org/10.1103/PhysRevSeriesI.26.248
  43. Routh E.J. Advanced rigid bodies dynamics, London: MacMillan and Co., 1884.
  44. Samsonov V.A. On the rotation of a body in a magnetic field, Izv. Akad. Nauk. Mekh. Tverd. Tela, 1984, vol. 19, no. 4, pp. 32-34 (in Russian).
  45. Tsiganov A.V. Bäcklund transformations for the nonholonomic Veselova system, Regular and Chaotic Dynamics, 2017, vol. 22, issue 2, pp. 163-179. https://doi.org/10.1134/S1560354717020058
  46. Tsiganov A.V. Integrable discretization and deformation of the nonholonomic Chaplygin ball, Regular and Chaotic Dynamics, 2017, vol. 22, issue 4, pp. 353-367. https://doi.org/10.1134/S1560354717040025
  47. Tsiganov A.V. On exact discretization of cubic-quintic Duffing oscillator, Journal of Mathematical Physics, 2018, vol. 59, issue 7, 072703. https://doi.org/10.1063/1.5034381
  48. Tsiganov A.V. Discretization of Hamiltonian systems and intersection theory, Theoretical and Mathematical Physics, 2018, vol. 197, issue 3, pp. 1806-1822. https://doi.org/10.1134/S0040577918120103
  49. Tsiganov A.V. Hamiltonization and separation of variables for a Chaplygin ball on a rotating plane, Regular and Chaotic Dynamics, 2019, vol. 24, issue 2, pp. 171-186. https://doi.org/10.1134/S1560354719020035
  50. Uhlenbeck G.E., Goudsmit S. Ersetzung der hypothese vom unmechanischen zwang durch eine forderung bezüglich des inneren verhaltens jedes einzelnen elektrons, Naturwissenschaften, 1925, vol. 13, issue 47, pp. 953-954. https://doi.org/10.1007/BF01558878
  51. Urman Yu.M. Influence of the Barnett-London effect on the motion of a superconducting rotor in a nonuniform magnetic field, Technical Physics, 1998, vol. 43, issue 8, pp. 885-889. https://doi.org/10.1134/1.1259095
Full text
<< Previous article
Next article >>