phone +7 (3412) 91 60 92

Archive of Issues

Russia Izhevsk
Section Mechanics
Title Space semidiscrete formulation of contact algorithm based on the Schwarz's decomposition method for deformable bodies
Author(-s) Karavaev A.S.ab, Kopysov S.P.ab
Affiliations Institute of Mechanics, Ural Branch of the Russian Academy of Sciencesa, Udmurt State Universityb
Abstract Implicit integration scheme for Schwarz alternating method for dynamic contact interaction problems of two interacting volumetric bodies without friction is considered. The paper presents the results of testing a contact algorithm of Schwarz domain decomposition using HTT-$\alpha$ scheme in consistent method redistribution of mass on the boundary of contact. To prevent artificial oscillations on the contact boundary together with common dissipative properties of the $\alpha$-scheme, the consistent mass redistribution method was used. The main advantage of this approach is the option to use multigrid methods to speed up the algorithm on subdomains, also there is no need for contact elements, contact parameters, Lagrange multipliers or regularization. Numerical examples including various contact zones, different materials of contact bodies and comparisons with measurements of other methods show the wide applicability of the derived algorithm.
Keywords dynamic contact analysis, Schwarz alternating method, mass redistribution, implicit schemes
UDC 517.95
MSC 74S05, 74H15
DOI 10.20537/vm170309
Received 4 August 2017
Language Russian
Citation Karavaev A.S., Kopysov S.P. Space semidiscrete formulation of contact algorithm based on the Schwarz's decomposition method for deformable bodies, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2017, vol. 27, issue 3, pp. 396-413.
  1. Bourago N.G., Kukudzhanov V.N. A review of contact algorithms, Mechanics of Solids, 2005, vol. 40, no. 1, pp. 35-71.
  2. Laursen T.A. Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis, New York: Springer, 2003, xv+454 p. DOI: 10.1007/978-3-662-04864-1
  3. Tsvik L.B. Generalization of the Schwartz algorithm to the case of regions in contact without overlapping, Dokl. Akad. Nauk SSSR, 1975, vol. 224, no. 2, pp. 309-312 (in Russian).
  4. Galanin M.P., Lukin V.V., Rodin A.S., Stankevich I.V. Application of the Schwarz alternating method for simulating the contact interaction of a system of bodies, Comput. Math. Math. Phys., 2015, vol. 55, issue 8, pp. 1393-1406. DOI: 10.1134/S0965542515080102
  5. Eck C., Wohlmuth B. Convergence of a contact-Neumann iteration for the solution of two-body contact problems, Math. Models Methods Appl. Sci., 2003, vol. 13, issue 8, pp. 1103-1118. DOI: 10.1142/S0218202503002830
  6. Bayada G., Sabil J., Sassi T. A Neumann-Neumann domain decomposition algorithm for the Signorini problem, Appl. Math. Lett., 2004, vol. 17, issue 10, pp. 1153-1159. DOI: 10.1016/j.aml.2003.10.010
  7. Sassi T., Ipopa M., Roux F.X. Generalization of Lions' nonoverlapping domain decomposition method for contact problems, Domain decomposition methods in science and engineering XVII, Eds.: Langer U., Discacciati M., Keyes D.E., Widlund O.B., Zulehner W., Springer Berlin Heidelberg, 2008, pp. 623-630. DOI: 10.1007/978-3-540-75199-1_78
  8. Konyukhov A., Schweizerhof K. Computational contact mechanics: geometrically exact theory for arbitrary shaped bodies, Springer, 2013. DOI: 10.1007/978-3-642-31531-2
  9. Yastrebov V.A., Breitkopf P. Numerical methods in contact mechanics. Wiley, 2013, 416 p. DOI: 10.1002/9781118647974
  10. Karavaev A.S., Kopysov S.P. The method of unstructured hexahedral mesh generation from volumetric data, Komp'yuternye issledovaniya i modelirovanie, 2013, vol. 5, no. 1, pp. 11-24 (in Russian).
  11. Karavaev A.S., Kopysov S.P. The Schwarz method of domain decomposition in contact problems, Trudy Instituta mekhaniki Ural'skogo otdeleniya Rossiiskoi Akademii Nauk “Problemy mekhaniki i materialovedeniya”, Izhevsk: Institute of Mechanics, Ural Branch of the Russian Academy of Sciences, 2017, pp. 6-20 (in Russian).
  12. Karavaev A.S., Kopysov S.P., Kuz'min I.M. Conservative interpolation method between non-matching surface meshes, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2014, issue 4, pp. 64-75 (in Russian). DOI: 10.20537/vm140405
  13. Shabrov N.N. Metod konechnykh elementov v raschetakh detalei teplovykh dvigatelei (The finite element method in calculating the details of thermal engines), Leningrad: Mashinostroenie, 1983, 212 p.
  14. Hilber H.M., Hughes T.R.J., Taylor R.L. Improved numerical dissipation for time integration algorithms in structural dynamics, Earthquake Engineering and Structural Dynamics, 1977, vol. 5, issue 3, pp. 283-292. DOI: 10.1002/eqe.4290050306
  15. Deuflhard P., Krause R., Ertel S. A contact-stabilized Newmark method for dynamical contact problems, Internat. J. Numer. Methods Engrg., 2008, vol. 73, issue 9, pp. 1274-1290. DOI: 10.1002/nme.2119
  16. Laursen T.A., Chawla V. Design of energy conserving algorithms for frictionless dynamic contact problems, Internat. J. Numer. Methods Engrg., 1997, vol. 40, issue 5, pp. 863-886. DOI: 10.1002/(SICI)1097-0207(19970315)40:5<863::AID-NME92>3.0.CO;2-V
  17. Khenous H.B., Laborde P., Renard Y. Mass redistribution method for finite element contact problems in elastodynamics, Eur. J. Mech. A Solids, 2008, vol. 27, issue 5, pp. 918-932. DOI: 10.1016/j.euromechsol.2008.01.001
  18. Hager C., Hüeber S., Wohlmuth B.I. A stable energy-conserving approach for frictional contact problems based on quadrature formulas, Internat. J. Numer. Methods Engrg., 2008, vol. 73, issue 2, pp. 205-225. DOI: 10.1002/nme.2069
  19. Krause R., Walloth M. Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme, Appl. Numer. Math., 2012, vol. 62, issue 10, pp. 1393-1410. DOI: 10.1016/j.apnum.2012.06.014
  20. Belytschko T., Neal M.O. Contact-impact by the pinball algorithm with penalty and Lagrangian methods, Internat. J. Numer. Methods Engrg., 1991, vol. 31, issue 3, pp. 547-572. DOI: 10.1002/nme.1620310309
  21. Sitzmann S. Robust algorithms for contact problems with constitutive contact laws, Zur Erlangung des Doktorgrades Dr.-Ing., 2016, Der Technischen Fakultat der Friedrich-Alexander-Universitat Erlangen-Nurnberg, 164 p.
  22. Dostal Z., Kozubek T., Brzobohaty T., Markopoulos A., Vlach O. Scalable TFETI with optional preconditioning by conjugate projector for transient frictionless contact problems of elasticity, Comput. Methods Appl. Mech. Engrg., 2012, vol. 247-248, pp. 37-50. DOI: 10.1016/j.cma.2012.08.003
Full text
<< Previous article
Next article >>