phone +7 (3412) 91 60 92

Archive of Issues

Russia Kemerovo
Section Mechanics
Title Numerical solution of the heat transfer problem in a short channel with backward-facing step
Author(-s) Fomin A.A.a, Fomina L.N.b
Affiliations Kuzbass State Technical Universitya, Kemerovo State Universityb
Abstract A test problem of the laminar steady incompressible flow and heat transfer over backward-facing step in a 2D short channel is presented. The focus of the study is on the changes in heat transfer characteristics of the flow field inside the channel due to different boundary conditions for heat flux at the outflow border of the domain. The Navier-Stokes equations in a velocity-pressure formulation and energy equation are numerically solved using a uniform grid of $6001\times301$ points. The control-volume technique for the second-order difference approximation for spatial derivatives is used. The solutions were validated for a wide range of Reynolds numbers $(100 \leq \text{Re} \leq 1000)$ and Prandtl number $\text{Pr} = 0.71$, comparing them to experimental and numerical results found in the literature. The isotherm patterns and behaviors of Nusselt number along the heated bottom wall of the channel are examined. The study results showed that a condition for the heat flow (temperature) at the outlet border can influence the heat transfer in the whole domain. The nonlinear boundary condition for temperature at the outflow border is claimed as the best.
Keywords incompressible fluid flow, heat transfer, outflow boundary condition
UDC 532.516.5, 536.24
MSC 76D05, 80A20, 65N06
DOI 10.20537/vm170311
Received 1 July 2017
Language English
Citation Fomin A.A., Fomina L.N. Numerical solution of the heat transfer problem in a short channel with backward-facing step, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2017, vol. 27, issue 3, pp. 431-449.
  1. Roache P.J. Computational fluid dynamics, Albuquerque: Hermosa Publs., 1976, 446 p.
  2. Orlanski I. A simple boundary condition for unbounded hyperbolic flows, J. Comput. Phys., 1976, vol. 21, issue 3, pp. 251-269. DOI: 10.1016/0021-9991(76)90023-1
  3. Camerlengo A.L., O'Brien J.J. Open boundary conditions in rotating fluids, J. Comput. Phys., 1980, vol. 35, issue 1, pp. 12-35. DOI: 10.1016/0021-9991(80)90031-5
  4. Han T.Y., Meng J.C.S., Innis G.E. An open boundary condition for incompressible stratified flows, J. Comput. Phys., 1983, vol. 49, issue 2, pp. 276-297. DOI: 10.1016/0021-9991(83)90127-4
  5. Sani R.L., Gresho P.M. Resume and remarks on the open boundary condition minisymposium, Internat. J. Numer. Methods Fluids, 1994, vol. 18, issue 10, pp. 983-1008. DOI: 10.1002/fld.1650181006
  6. Ol'shanskii M.A., Staroverov V.M. On simulation of outflow boundary conditions in finite difference calculations for incompressible fluid, Internat. J. Numer. Methods Fluids, 2000, vol. 33, issue 4, pp. 499-534. DOI: 10.1002/1097-0363(20000630)33:4<499::AID-FLD19>3.0.CO;2-7
  7. Blayo E., Debreu L. Revisiting open boundary conditions from the point of view of characteristic variables, Ocean Modelling, 2005, vol. 9, issue 3, pp. 231-252. DOI: 10.1016/j.ocemod.2004.07.001
  8. Dong S., Karniadakis G.E., Chryssostomidis C. A robust and accurate outflow boundary condition for incompressible flow simulations on severely-truncated unbounded domains, J. Comput. Phys., 2014, vol. 261, pp. 83-105. DOI: 10.1016/
  9. Kawamura T., Tanaka S., Mabuchi I., Kumada M. Temporal and spatial characteristics of heat transfer at the reattachment region of a backward-facing step, Experimental Heat Transfer, 1987, vol. 1, issue 4, pp. 299-313. DOI: 10.1080/08916158708946348
  10. Sparrow E.M., Kang S.S., Chuck W. Relation between the points of flow reattachment and maximum heat transfer for regions of flow separation, International Journal of Heat and Mass Transfer, 1987, vol. 30, issue 7, pp. 1237-1246. DOI: 10.1016/0017-9310(87)90157-8
  11. Nakamura H., Takaki S., Yamada S. Spatio-temporal characteristics of heat transfer in separated and reattaching flows, Proc. ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 1, Symposia - Parts A, B, C, and D, 2011, ASME, pp. 3977-3988. DOI: 10.1115/AJK2011-25020
  12. Nakamura H., Yamada S. Quantitative evaluation of spatio-temporal heat transfer to a turbulent air flow using a heated thin-foil, International Journal of Heat and Mass Transfer, 2013, vol. 64, pp. 892-902. DOI: 10.1016/j.ijheatmasstransfer.2013.05.006
  13. Aung W., Baron A., Tsou F.-K. Wall independency and effect of initial shear-layer thickness in separated flow and heat transfer, International Journal of Heat and Mass Transfer, 1985, vol. 28, issue 9, pp. 1757-1771. DOI: 10.1016/0017-9310(85)90149-8
  14. Kondoh T., Nagano Y., Tsuji T. Computational study of laminar heat transfer downstream of a backward-facing step, International Journal of Heat and Mass Transfer, 1993, vol. 36, issue 3, pp. 577-591. DOI: 10.1016/0017-9310(93)80033-Q
  15. Valencia A., Hinojosa L. Numerical solutions of pulsating flow and heat transfer characteristics in a channel with a backward-facing step, Heat Mass Transf., 1997, vol. 32, issue 3, pp. 143-148. DOI: 10.1007/s002310050104
  16. Kanna P.R., Das M.K. Conjugate heat transfer study of a two-dimensional laminar incompressible wall jet over a backward-facing step, Journal of Heat Transfer, 2006, vol. 129, issue 2, pp. 220-231. DOI: 10.1115/1.2424235
  17. Tihon J., Pěnkavová V., Havlica J., Šimčík M. The transitional backward-facing step flow in a water channel with variable expansion geometry, Experimental Thermal and Fluid Science, 2012, vol. 40, pp. 112-125. DOI: 10.1016/j.expthermflusci.2012.02.006
  18. Yang Y.T., Huang M.L. Numerical studies of heat transfer characteristics by using jet discharge at downstream of a backward-facing step, Acta Mech., 1998, vol. 128, issue 1-2, pp. 29-37. DOI: 10.1007/BF01463157
  19. Tsay Y.-L., Chang T.S., Cheng J.C. Heat tranfer enhancement of backward-facing step flow in a channel by using baffle installation on the channel wall, Acta Mech., 2005, vol. 174, issue 1-2, pp. 63-76. DOI: 10.1007/s00707-004-0147-5
  20. Hong B., Armaly B.F., Chen T.S. Laminar mixed convection in a duct with a backward-facing step: the effects of inclination angle and Prandtl number, International Journal of Heat and Mass Transfer, 1993, vol. 36, issue 12, pp. 3059-3067. DOI: 10.1016/0017-9310(93)90034-4
  21. Abu-Hijleh B. Convection heat transfer from a laminar flow over a 2-D backward facing step with asymmetric and orthotropic porous floor segments, Numerical Heat Transfer. Part A: Applications, 1997, vol. 31, issue 3, pp. 325-335. DOI: 10.1080/10407789708914040
  22. Batenko S.R., Terekhov V.I. Friction and heat transfer in a laminar separated flow behind a rectangular step with porous injection or suction, J. Appl. Mech. Tech. Phys., 2006, vol. 47, issue 1, pp. 12-21. DOI: 10.1007/s10808-006-0002-7
  23. Abu-Nada E., Al-Sarkhi A., Akash B., Al-Hinti I. Heat transfer and fluid flow characteristics of separated flows encountered in a backward-facing step under the effect of suction and blowing, Journal of Heat Transfer, 2007, vol. 129, issue 11, pp. 1517-1528. DOI: 10.1115/1.2759973
  24. Saha S., Mamun A.H., Hossain Z., Islam S. Mixed convection in an enclosure with different inlet and exit configurations, Journal of Applied Fluid Mechanics, 2008, vol. 1, no. 1, pp. 78-93.
  25. Teruel F.E., Fogliatto E. Numerical simulations of flow, heat transfer and conjugate heat transfer in the backward-facing step geometry, Mecanica Computacional, 2013, vol. 32, no. 39, pp. 3265-3278.
  26. Gada V.H., Datta D., Sharma A. Analytical and numerical study for two-phase stratified-flow in a plane channel subjected to different thermal boundary conditions, International Journal of Thermal Sciences, 2013, vol. 71, pp. 88-102. DOI: 10.1016/j.ijthermalsci.2013.03.022
  27. Mitsoulis E., Malamataris N.A. Free (open) boundary condition: some experiences with viscous flow simulation, Internat. J. Numer. Methods Fluids, 2012, vol. 68, issue 10, pp. 1299-1323. DOI: 10.1002/fld.2608
  28. Papanastasiou T.C., Malamataris N., Ellwood K. A new outflow boundary condition, Internat. J. Numer. Methods Fluids, 1992, vol. 14, issue 5, pp. 587-608. DOI: 10.1002/fld.1650140506
  29. Dimakopoulos Y., Karapetsas G., Malamataris N.A., Mitsoulis E. The free (open) boundary condition at inflow boundaries, J. Non-Newton. Fluid Mech., 2012, vol. 187-188, pp. 16-31. DOI: 10.1016/j.jnnfm.2012.09.001
  30. Patankar S.V. Numerical heat transfer and fluid flow, New York: Hemisphere Publishing Corporation, 1980, 197 p.
  31. Belotserkovskii O.M., Gushchin V.A., Shchennikov V.V. Use of the splitting method to solve problems of the dynamics of a viscous incompressible fluid, USSR Computational Mathematics and Mathematical Physics, 1975, vol. 15, issue 1, pp. 190-200. DOI: 10.1016/0041-5553(75)90146-9
  32. Fomin A.A., Fomina L.N. Numerical simulation of viscous incompressible fluid in a short plane channel with backward-facing step, Matem. Mod., 2016, vol. 28, no. 5, pp. 32-46 (in Russian).
  33. Fomin A.A., Fomina L.N. Acceleration of the line-by-line recurrent method in Krylov subspaces, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 2 (14), pp. 45-54 (in Russian).
  34. Armaly B.F., Durst F., Pereira J.C.F., Schönung B. Experimental and theoretical investigation of backward-facing step flow, J. Fluid Mech., 1983, vol. 127, pp. 473-496. DOI: 10.1017/S0022112083002839
  35. Chiang T.P., Sheu T.W.H., Fang C.C. Numerical investigation of vortical evolution in a backward-facing step expansion flow, Appl. Math. Model., 1999, vol. 23, issue 12, pp. 915-932. DOI: 10.1016/S0307-904X(99)00019-0
  36. Erturk E. Numerical solutions of 2-D steady incompressible flow over a backward-facing step, Part I: High Reynolds number solutions, Comput. & Fluids, 2008, vol. 37, issue 6, pp. 633-655. DOI: 10.1016/j.compfluid.2007.09.003
  37. Rogers S.E., Kwak D. An upwind differencing scheme for the incompressible Navier-Stokes equations, Appl. Numer. Math., 1991, vol. 8, issue 1, pp. 43-64. DOI: 10.1016/0168-9274(91)90097-J
  38. Lewis R.W., Nithiarasu P., Seetharamu K.N. Fundamentals of the finite element method for heat and fluid flow, John Wiley & Sons, 2004, xiv + 341 p. DOI: 10.1002/0470014164
  39. Cruchaga M.A. A study of the backward-facing step problem using a generalized streamline formulation, Communications in Numerical Methods in Engineering, 1998, vol. 14, issue 8, pp. 697-708. DOI: 10.1002/(SICI)1099-0887(199808)14:8<697::AID-CNM155>3.0.CO;2-0
  40. Roed L.P., Smedstad O.M. Open boundary conditions for forced waves in a rotating fluid, SIAM Journal on Scientific and Statistical Computing, 1984, vol. 5, issue 2, pp. 414-426. DOI: 10.1137/0905031
Full text
<< Previous article
Next article >>