phone +7 (3412) 91 60 92

Archive of Issues

Russia Volgograd
Section Mechanics
Title The problem of boundary conditions for the shallow water equations
Author(-s) D'yakonova T.A.a, Khrapov S.S.a, Khoperskov A.V.a
Affiliations Volgograd State Universitya
Abstract The problem of choice of boundary conditions is discussed for the case of numerical integration of the shallow water equations on a substantially irregular relief. While modeling unsteady surface water flows there is a dynamic boundary that partitions liquid and dry bottom. The situation is complicated by the emergence of sub- and supercritical flow regimes for the problems of seasonal floodplain flooding, flash floods, tsunami landfalls. Analysis of the use of various methods of setting conditions for the physical quantities of liquid at the settlement of the boundary shows the advantages of using the waterfall type conditions in the presence of strong heterogeneities of landforms. When there is a waterfall on the border of computational domain and heterogeneity of the relief in the vicinity of the boundary, a portion may occur which is formed by the region of critical flow with the formation of a hydraulic jump, which greatly weakens the effect of the waterfall on the flow pattern upstream.
Keywords shallow water model, numerical schemes, boundary conditions, irregular bottom
UDC 519.6, 532.5
MSC 76D27
DOI 10.20537/vm160309
Received 25 May 2016
Language Russian
Citation D'yakonova T.A., Khrapov S.S., Khoperskov A.V. The problem of boundary conditions for the shallow water equations, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2016, vol. 26, issue 3, pp. 401-417.
  1. Shokin Yu.I., Fedotova Z.I., Khakimzyanov G.S. Hierarchy of nonlinear models of the hydrodynamics of long surface waves, Doklady Physics, 2015, vol. 60, issue 5, pp. 224-228. DOI: 10.1134/S1028335815050079
  2. Fedotova Z.I., Khakimzyanov G.S. Nonlinear dispersive shallow water equations for a non-stationary bottom, Vychisl. Tekhnol., 2008, vol. 13, no. 4, pp. 114-126 (in Russian).
  3. Green A.E., Naghdi P.M. A derivation of equations for wave propagation in water of variable depth, Journal of Fluid Mechanics, 1976, vol. 78, issue 2, pp. 237-246. DOI: 10.1017/S0022112076002425
  4. Bautin S.P., Deryabin S.L. Research of the initial boundary value problem for the system of Green-Naghdi equations, Vestn. Ural. Gos. Univ. Put. Soobshch., 2012, no. 1 (13), pp. 4-13 (in Russian).
  5. Pelinovskii E.N. Gidrodinamika voln tsunami (Hydrodynamics of tsunami waves), Nizhnii Novgorod: Institute of Applied Physics of RAS, 1996, 276 p.
  6. Bautin S.P., Deryabin S.L., Sommer A.F., Khakimzyanov G.S. Investigation of solutions of the shallow water equations in the vicinity of the mobile run-up line, Vychisl. Tekhnol., 2010, vol. 15, no. 6, pp. 19-41 (in Russian).
  7. Prokof'ev V.A. Refinement shallow water model on the basis of spectral representation of the profile of depth speed, Izvestiya Vserossiiskogo Nauchno-Issledovatel'skogo Instituta Gidrotekhniki Im. B.E. Vedeneeva, 2000, vol. 236, pp. 121-133 (in Russian).
  8. Danilova K.N., Liapidevskii V.Yu. Solitary waves in two-layer shallow water, Journal of Mathematical Sciences, 2016, vol. 213, issue 6, pp. 802-810. DOI: 10.1007/s10958-016-2741-1
  9. Khakimzyanov G.S., Gusev O.I., Beizel S.A., Chubarov L.B., Shokina N.Yu. Simulation of tsunami waves generated by submarine landslides in the Black Sea, Russian Journal of Numerical Analysis and Mathematical Modelling, 2015, vol. 30, issue 4, pp. 227-237. DOI: 10.1515/rnam-2015-0020
  10. Liapidevskii V.Yu. Shallow-water equations with dispersion. Hyperbolic model, Journal of Applied Mechanics and Technical Physics, 1998, vol. 39, issue 2, pp. 194-199. DOI: 10.1007/BF02468084
  11. Zeytounian R.Kh. Nonlinear long waves on water and solitons, Physics-Uspekhi, vol. 38, no. 12, pp. 1333-1381. DOI: 10.1070/PU1995v038n12ABEH000124
  12. Gusev O.I., Shokina N.Yu., Kutergin V.A., Khakimzyanov G.S. Numerical modelling of surface waves generated by underwater landslide in a reservoir, Vychisl. Tekhnol., 2013, vol. 18, no. 5, pp. 74-90 (in Russian).
  13. Horritt M.S., Di Baldassarre G., Bates P.D., Brath A. Comparing the performance of a 2-D finite element and a 2-D finite volume model of floodplain inundation using airborne SAR imagery, Hydrological Processes, 2007, vol. 21, issue 20, pp. 2745-2759. DOI: 10.1002/hyp.6486
  14. Bolgov M.V., Krasnozhon G.F., Shatalova K.Yu. Computer hydrodynamic model of the Lower Volga, Water Resources, 2014, vol. 41, issue 1, pp. 19-31. DOI: 10.1134/S0097807814010047
  15. Pisarev A.V., Khrapov S.S, Agafonnikova E.O., Khoperskov A.V. Numerical model of shallow water dynamics in the channel of the Volga: estimation of roughness, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 1, pp. 114-130 (in Russian). DOI: 10.20537/vm130111
  16. Caviedes-Voulliéme D., Morales-Hernandez M., Lopez-Marijuan I., García-Navarro P. Reconstruction of 2D river beds by appropriate interpolation of 1D cross-sectional information for flood simulation, Environmental Modelling & Software, 2014, vol. 61, pp. 206-228. DOI: 10.1016/j.envsoft.2014.07.016
  17. Costabile P., Costanzo C., Macchione F. A storm event watershed model for surface runoff based on 2D fully dynamic wave equations, Hydrological Processes, 2013, vol. 27, issue 4, pp. 554-569. DOI: 10.1002/hyp.9237
  18. Juez C., Caviedes-Voulliéme D., Murillo J., García-Navarro P. 2D dry granular free-surface transient flow over complex topography with obstacles. Part II: Numerical predictions of fluid structures and benchmarking, Computers & Geosciences, 2014, vol. 73, pp. 142-163. DOI: 10.1016/j.cageo.2014.09.010
  19. Marchuk A.G., Moshkalev P.S. Numeric simulation of the tsunami runup process on the shore with arbitrary profile, Vestn. Novosib. Gos. Univ. Ser. Inform. Tekhnol., 2014, vol. 12, no. 2, pp. 55-63 (in Russian).
  20. Vacondio R., Rogers B.D., Stansby P.K. Smoothed particle hydrodynamics: approximate zero-consistent 2-D boundary conditions and still shallow-water tests, International Journal for Numerical Methods in Fluids, 2012, vol. 69, issue 1, pp. 226-253. DOI: 10.1002/fld.2559
  21. Bautin S.P., Deryabin S.L., Sommer A.F., Khakimzyanov G.S., Shokina N.Yu. Use of analytic solutions in the statement of difference boundary conditions on a movable shoreline, Russian Journal of Numerical Analysis and Mathematical Modelling, 2011, vol. 26, issue 4, pp. 353-377. DOI: 10.1515/rjnamm.2011.020
  22. Burguete J., García-Navarro P. Implicit schemes with large time step for non-linear equations: application to river flow hydraulics, International Journal for Numerical Methods in Fluids, 2004, vol. 46, issue 6, pp. 607-636. DOI: 10.1002/fld.772
  23. Burguete J., García-Navarro P., Murillo J. Numerical boundary conditions for globally mass conservative methods to solve the shallow-water equations and applied to river flow, International Journal for Numerical Methods in Fluids, 2006, vol. 51, issue 6, pp. 585-615. DOI: 10.1002/fld.1127
  24. Burguete J., García-Navarro P., Aliod R. Numerical simulation of runoff from extreme rainfall events in a mountain water catchment, Natural Hazards and Earth System Science, 2002, vol. 2, issue 1/2, pp. 109-117. DOI: 10.5194/nhess-2-109-2002
  25. Westoby M.J., Glasser N.F., Brasington J., Hambrey M.J., Quincey D.J., Reynolds J.M. Modelling outburst floods from moraine-dammed glacial lakes, Earth-Science Reviews, 2014, vol. 134, pp. 137-159. DOI: 10.1016/j.earscirev.2014.03.009
  26. Singh J., Altinakar M.S., Ding Y. Numerical modeling of rainfall-generated overland flow using nonlinear shallow-water equations, Journal of Hydrologic Engineering, 2015, vol. 20, issue 8, 04014089. DOI: 10.1061/(ASCE)HE.1943-5584.0001124
  27. Skiba Yu.N. Total energy and mass conserving finite-difference schemes for the shallow water equations, Russian Meteorology and Hydrology, 1995, vol. 2, pp. 35-43.
  28. Il'gamov M.A., Gil'manov A.N. Neotrazhayushchie usloviya na granitsakh raschetnoi oblasti (Non-reflecting boundary conditions for computational domains), Moscow: Fizmatlit, 2003, 240 p.
  29. Zokagoa J.M., Soulaimani A. Modeling of wetting-drying transitions in free surface flows over complex topographies, Computer Methods in Applied Mechanics and Engineering, 2010, vol. 199, issues 33-36, pp. 2281-2304. DOI: 10.1016/j.cma.2010.03.023
  30. Liang Q., Borthwick A.G.L. Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography, Computers & Fluids, 2009, vol. 38, issue 2, pp. 221-234. DOI: 10.1016/j.compfluid.2008.02.008
  31. Kopysov S.P., Tonkov L.E., Chernova A.A., Sarmakeeva A.S. Modeling of the incompressible liquid flow interaction with barriers using VOF and SPH methods, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2015, vol. 25, no. 3, pp. 405-420 (in Russian). DOI: 10.20537/vm150311
  32. Vater S., Beisiegel N., Behrens J. A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: One-dimensional case, Advances in Water Resources, 2015, vol. 85, pp. 1-13. DOI: 10.1016/j.advwatres.2015.08.008
  33. Ostapenko V.V. Modified shallow water equations which admit the propagation of discontinuous waves over a dry bed, Journal of Applied Mechanics and Technical Physics, 2007, vol. 48, issue 6, pp. 795-812. DOI: 10.1007/s10808-007-0103-y
  34. Khrapov S.S., Khoperskov A.V., Kuz’min N.M., Pisarev A.V., Kobelev I.A. A numerical scheme for simulating the dynamics of surface water on the basis of the combined SPH-TVD approach, Vychisl. Metody Program., 2011, vol. 12, no. 2, pp. 282-297 (in Russian).
  35. Pisarev A.V., Khrapov S.S., Voronin A.A., Dyakonova T.A., Tsyrkova E.A. The role of infiltration and evaporation in the flooding dynamics of the Volga-Akhtuba floodplain, Vestnik Volgogradskogo Gosudarstvennogo Universiteta. Seriya 1. Matematika. Fizika, 2012, no. 1 (16), pp. 36-41 (in Russian). DOI: 10.15688/jvolsu1.2012.1.5
  36. Dyakonova T.A., Pisarev A.V., Khoperskov A.V., Khrapov S.S. Mathematical model of surface water dynamics, Vestnik Volgogradskogo Gosudarstvennogo Universiteta. Seriya 1. Matematika. Fizika, 2014, no. 1 (20), pp. 35-44 (in Russian). DOI: 10.15688/jvolsu1.2014.1.4
  37. Khrapov S., Pisarev A., Kobelev I., Zhumaliev A., Agafonnikova E., Losev A., Khoperskov A. The numerical simulation of shallow water: estimation of the roughness coefficient on the flood stage, Advances in Mechanical Engineering, 2013, vol. 5, 787016, 11 p. DOI: 10.1155/2013/787016
  38. Shushkevich T.S., Kuzmin N.M., Butenko M.A. The three-dimensional parallel numerical code on the base of mixed Lagrange-Eulerian approach, Vestnik Volgogradskogo Gosudarstvennogo Universiteta. Seriya 1. Matematika. Fizika, 2015, no. 4 (29), pp. 24-34 (in Russian). DOI: 10.15688/jvolsu1.2015.4.3
  39. Yee H.C., Beam R.M., Warming R.F. Boundary approximations for implicit schemes for one-dimensional inviscid equations of gasdynamics, AIAA Journal, 1982, vol. 20, no. 9, pp. 1203-1211. DOI: 10.2514/3.51181
  40. Jin M., Fread D.L. Dynamic flood routing with explicit and implicit numerical solution schemes, Journal of Hydraulic Engineering, 1997, vol. 123, issue 3, pp. 166-173. DOI: 10.1061/(ASCE)0733-9429(1997)123:3(166)
  41. Cozzolino L., Della Morte R., Cimorelli L., Covelli C., Pianese D. A broad-crested weir boundary condition in finite volume shallow-water numerical models, Procedia Engineering, 2014, vol. 70, pp. 353-362. DOI: 10.1016/j.proeng.2014.02.040
Full text
<< Previous article
Next article >>