phone +7 (3412) 91 60 92

Archive of Issues

Germany; Russia Jena; Yekaterinburg
Section Mathematics
Title Traveling waves in a profile of phase field: exact analytical solutions of a hyperbolic Allen-Cahn equation
Author(-s) Nizovtseva I.G.a, Galenko P.K.b, Alexandrov D.V.a, Vikharev S.V.a, Titova E.A.a, Sukhachev I.S.a
Affiliations Ural Federal Universitya, University of Jenab
Abstract To obtain solutions of the hyperbolic Allen-Cahn equation, the first integral method, which follows from well-known Hilbert Null-theorem, is used. Exact analytical solutions are obtained in a form of traveling waves, which define complete class of the hyperbolic Allen-Cahn equation. It is shown that two subclasses of solutions exist within this complete class. The first subclass exhibits continual solutions and the second subclass is represented by solutions with singularity at the origin of coordinate system. Such non-uniqueness of solutions stands a question about stable attractor, i.e., about the traveling wave to which non-stationary solutions may attract. The obtained solutions include earlier solutions for the parabolic Allen-Cahn equation in a form of finite number of $\tanh$-functions.
Keywords traveling wave, Allen-Cahn equation, first integral method, division theorem
UDC 51-72
MSC 00A79, 35L70
DOI 10.20537/vm160211
Received 23 May 2016
Language Russian
Citation Nizovtseva I.G., Galenko P.K., Alexandrov D.V., Vikharev S.V., Titova E.A., Sukhachev I.S. Traveling waves in a profile of phase field: exact analytical solutions of a hyperbolic Allen-Cahn equation, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2016, vol. 26, issue 2, pp. 245-257.
  1. Cahn J.W., Allen S.M. A microscopic theory of domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics, J. Phys. Colloq., 1977, vol. 38 (C7), pp. 51-54.
  2. Allen S.M., Cahn J.W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 1979, vol. 27, pp. 1085-1095.
  3. Wheeler A., Boettinger W.J., McFadden G.B. Phase-field model for isothermal phase transitions in binary alloys, Phys. Rev. A, 1992, vol. 45, no. 10, pp. 7424-7240.
  4. Gouyet J.F. Generalized Allen-Cahn equations to describe far-from-equilibrium order-disorder dynamics, Phys. Rev. E, 1995, vol. 51, no. 3, pp. 1695-1710.
  5. Fife P.C., Lacey A.A. Motion by curvature in generalized Cahn-Allen models, J. Stat. Phys., 1994, vol. 77, no. 1-2, pp. 173-181.
  6. Benes M., Chalupecky V., Mikula K. Geometrical image segmentation by the Allen-Cahn equation, Applied Numerical Mathematics, 2004, vol. 51, pp. 187-205.
  7. Alfaro M., Hilhorst D. Generation of interface for an Allen-Cahn equation with nonlinear diffusion, Math. Model. Nat. Phenom., 2010, vol. 5, pp. 1-12.
  8. Caginalp G., Chen X. Phase field equations in the singular limit of sharp interface problems, IMA Volume of Mathematics and Its Applications, 1992, vol. 43, pp. 1-28.
  9. Bates P.W., Chen F. Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation, J. Math. Anal. Appl., 2002, vol. 273, pp. 45-57.
  10. Galenko P., Jou D. Diffuse-interface model for rapid phase transformations in nonequilibrium systems, Phys. Rev. E, 2005, vol. 71, pp. 046125-1-13.
  11. Yang Y., Humadi H., Buta D., Laird B.B., Sun D., Hoyt J.J., Asta M. Atomistic simulations of nonequilibrium crystal-growth kinetics from alloy melts, Phys. Rev. Lett., 2011, vol. 107, pp. 025505-1-4.
  12. Jou D., Galenko P. Coarse graining for the phase-field model of fast phase transitions, Phys. Rev. E, 2013, vol. 88, pp. 042151-1-8.
  13. Field R.J., Burger M. (Eds.) Oscillations and traveling waves in chemical systems, New York: Wiley, 1985, 681 p.
  14. Galenko P.K., Abramova E.V., Jou D., Danilov D.A., Lebedev V.G., Herlach D.M. Solute trapping in rapid solidification of a binary dilute system: A phase-field study, Phys. Rev. E, 2011, vol. 84, pp. 041143-1-17.
  15. Salhoumi A., Galenko P.K. Gibbs-Thomson condition for the rapidly moving interface in a binary system, Physica A, 2016, vol. 447, pp. 161-171.
  16. Feng Zh. The first-integral method to study the Burgers-Korteweg-de Vries equation, J. Phys. A: Math. Gen., 2002, vol. 35, pp. 343-349.
  17. Lu B., Zhang H-Q., Xie F.-D. Traveling wave solutions of nonlinear partial differential equations by using the first integral method, Applied Mathematics and Computations, 2010, vol. 216, pp. 1329-1336.
  18. Bourbaki N. Commutative Algebra, Springer, 1998, 625 p.
  19. Feng Zh., Wang X. The first integral method to the two-dimensional Burgers-Korteweg-de Vries equation, Physics Letters A, 2003, vol. 308, pp. 173-178.
  20. Ahmed Ali A.H., Raslan K.R. New solutions for some important partial differential equations, International Journal of Nonlinear Science, 2007, vol. 4, pp. 109-117.
  21. Wazwaz A.-M. The tanh method for traveling wave solutions of nonlinear equations, Applied Mathematics and Computation, 2004, vol. 154, no. 3, pp. 713-723.
  22. Tascan F., Bekir A. Travelling wave solutions of Cahn-Allen equation by using first integral method, Applied Mathematics and Computation, 2009, vol. 207, no. 1, pp. 279-282.
  23. Choi J.-W., Lee H.G., Jeong D., Kim J. An unconditionally gradient stable numerical method for solving the Allen-Cahn equuation, Physica A, 2009, vol. 388, pp. 1791-1803.
  24. Herlach D.M., Galenko P.K., Holland-Moritz D. Metastable solids from undercooled melts, Amsterdam: Elsevier, 2007, 432 p.
Full text
<< Previous article
Next article >>