References

 Kalantarov V.K., Ladyzhenskaya O.A. On the appearance of collapses for quasilinear equations of the parabolic and hyperbolic types, Zap. Nauch. Sem. LOMI, 1977, vol. 69, pp. 77102 (in Russian).
 Lions J.L. Upravlenie singulyarnymi raspredelennymi sistemami (Control of singular distributed systems), Moscow: Nauka, 1987, 368 p.
 Sumin V.I. The features of gradient methods for distributed optimal control problems, USSR Comput. Math. Math. Phys., 1990, vol. 30, no. 1, pp. 115.
 Sumin V.I. Funktsional'nye vol'terrovy uravneniya v teorii optimal'nogo upravleniya raspredelennymi sistemami. Chast' I. Vol'terrovy uravneniya i upravlyaemye nachal'nokraevye zadachi (Functional Volterra equations in the theory of optimal control of distributed systems. Part I. Volterra equations and controlled initial boundary value problems), Nizhni Novgorod: Nizhni Novgorod State University, 1992, 110 p.
 Sveshnikov A.G., Al'shin A.B., Korpusov M.O. Nelineinyi funktsional'nyi analiz i ego prilozheniya k uravneniyam v chastnykh proizvodnykh (Nonlinear functional analysis and its applications to partial differential equations), Moscow: Nauchnyi mir, 2008, 400 p.
 Filippov A.F. Differentsial'nye uravneniya s razryvnoi pravoi chast'yu (Differential equations with discontinuous righthand side), Moscow: Nauka, 1985, 224 p.
 Alekseev V.M., Tikhomirov V.M., Fomin S.V. Optimal'noe upravlenie (Optimal control), Moscow: Nauka, 1979, 432 p.
 Sumin V.I. Stability problem for the existence of global solutions to boundary value control problems and Volterra functional equations, Vestn. Nizhegorod. Univ. N.I. Lobachevskogo, Mat., 2003, no. 1, pp. 91107 (in Russian).
 Sumin V.I. Optimization of controlled generalized Volterra systems, Cand. Sci. (Phys.Math.) Dissertation, Gorkii, 1975, 158 p (in Russian).
 Morozov S.F., Sumin V.I. Optimization of nonlinear transport processes, Sov. Math., Dokl., 1979, vol. 20, pp. 802806.
 Morozov S.F., Sumin V.I. Optimization of the nonlinear systems of transport theory, USSR Comput. Math. Math. Phys., 1979, vol. 19, no. 1, pp. 101114.
 Sumin V.I. Volterra functionaloperator equations in the theory of optimal control of distributed systems, Sov. Math., Dokl., 1989, vol. 39, no. 2, pp. 374378.
 Sumin V.I. Sufficient conditions for stable existence of solutions to global problems in control theory, Differ. Equations, 1990, vol. 26, no. 12, pp. 15791590.
 Sumin V.I. Controlled functional Volterra equations in Lebesgue spaces, Vestn. Nizhegorod. Univ. N.I. Lobachevskogo. Mat. Model. Optim. Upr., 1998, no. 2 (19), pp. 138151 (in Russian).
 Sumin V.I. Functional Volterra equations in the mathematical theory of optimal control of distributed systems, Dr. Sci. (Phys.Math.) Dissertation, Nizhni Novgorod, 1998, 346 p (in Russian).
 Sumin V.I., Chernov A.V. Conditions for existence stability of global solutions to controlled Cauchy problem for a hyperbolic equation, Vestn. Nizhegorod. Univ. N.I. Lobachevskogo. Mat. Model. Optim. Upr., 1997, pp. 94103 (in Russian).
 Sumin V.I., Chernov A.V. Volterra operator equations in Banach spaces: existence stability of global solutions, Nizhni Novgorod State University, Nizhni Novgorod, 2000, 75 p. Deposited in VINITI 25.04.2000, no. 1198V00 (in Russian).
 Chernov A.V. Volterra operator equations and their application in the theory of optimization of hyperbolic systems, Cand. Sci. (Phys.Math.) Dissertation, Nizhni Novgorod, 2000, 177 p (in Russian).
 Sumin V.I., Chernov A.V. On sufficient conditions of existence stability of global solutions of Volterra operator equations, Vestn. Nizhegorod. Univ. N.I. Lobachevskogo. Mat. Model. Optim. Upr., 2003, no. 1 (26), pp. 3949 (in Russian).
 Chernov A.V. A majorant criterion for the total preservation of global solvability of controlled functional operator equation, Russian Mathematics, 2011, vol. 55, no. 3, pp. 8595. DOI: 10.3103/S1066369X11030108
 Chernov A.V. Sufficient conditions for the controllability of nonlinear distributed systems, Comput. Math. Math. Phys., 2012, vol. 52, no. 8, pp. 11151127. DOI: 10.1134/S0965542512050053
 Chernov A.V. On controllability of nonlinear distributed systems on a set of discretized controls, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 1, pp. 8398 (in Russian).
 Chernov A.V. On the convergence of the conditional gradient method in distributed optimization problems, Comput. Math. Math. Phys., 2011, vol. 51, no. 9, pp. 15101523. DOI: 10.1134/S0965542511090077
 Chernov A.V. Smooth finitedimensional approximations of distributed optimization problems via control discretization, Comput. Math. Math. Phys., 2013, vol. 53, no. 12, pp. 18391852. DOI: 10.1134/S096554251312004X
 Chernov A.V. On the smoothness of an approximated optimization problem for a GoursatDarboux system on a varied domain, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 2014, vol. 20, no. 1, pp. 305321 (in Russian).
 Chernov A.V. On Volterra functional operator games on a given set, Automation and Remote Control, 2014, vol. 75, no. 4, pp. 787803. DOI: 10.1134/S0005117914040195
 Vainberg M.M. Variational method and method of monotone operators in the theory of nonlinear equations, New YorkToronto: John Wiley & Sons, 1973; JerusalemLondon: Israel Program for Scientific Translations, 1973, xi+356 p. Original Russian text published in Vainberg M.M. Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Moscow: Nauka, 1972, 416 p.
 Chernov A.V. A majorantminorant criterion for the total preservation of global solvability of a functional operator equation, Russian Mathematics, 2012, vol. 56, no. 3, pp. 5565. DOI: 10.3103/S1066369X12030085
 Chernov A.V. A generalization of Bihari's lemma to the case of Volterra operators in Lebesgue spaces, Mathematical Notes, 2013, vol. 94, no. 5, pp. 703714. DOI: 10.1134/S0001434613110114
 Sumin V.I., Chernov A.V. Operators in spaces of measurable functions: the Volterra property and quasinilpotency, Differ. Equations, 1998, vol. 34, no. 10, pp. 14031411.
 Sumin V.I., Chernov A.V. On some indicators of the quasinilpotency of functional operators, Russian Mathematics, 2000, vol. 44, no. 2, pp. 7578.
 Kantorovich L.V., Akilov G.P. Funktsional'nyi analiz (Functional Analysis), Moscow: Nauka, 1984, 752 p (in Russian).
 Chernov A.V. On the existence stability of global solutions to a system of hyperbolic equations of the first order under the higher coefficients control, Trudy XXIII konferentsii molodykh uchenykh (Proceedings of XXIII conference of young scientists), Lomonosov Moscow State University, Moscow, 2001, pp. 352355 (in Russian).
 Chernov A.V. On necessary optimality conditions in the problem of higher coefficients control in a system of hyperbolic equations of the first order, Matematicheskoe modelirovanie i kraevye zadachi: Trudy II Vserossiiskoi nauchnoi konferentsii (Mathematical modeling and boundary value problems: Proceedings of the Second AllRussian scientific conference), Part 2, Samara State Technical University, Samara, 2005, pp. 259262 (in Russian).
