phone +7 (3412) 91 60 92

Archive of Issues

Russia Moscow
Section Mathematics
Title Cubic forms without monomials in two variables
Author(-s) Seliverstov A.V.a
Affiliations Institute for Information Transmission Problems, Russian Academy of Sciencesa
Abstract It is proved that a general cubic form over the field of complex numbers can be transformed into a form without monomials of exactly two variables by means of a non-degenerate linear transformation of coordinates. If the coefficients of monomials in only one variable are equal to one, and the remaining coefficients belong to sufficiently small polydisc near zero, then the transformation can be approximated by iterative algorithm. Under these restrictions the same result holds over the reals. This result generalizes the Levy-Desplanques theorem on strictly diagonally dominant matrices. We discuss in detail the properties of reducible cubic forms. So we prove the existence of a reducible real cubic form that is not equivalent to any form with all monomials in only one variable and without any monomials in exactly two variables. We suggest a sufficient condition for the existence of a singular point on a projective cubic hypersurface. The computational complexity of singular points recognition is discussed.
Keywords cubic form, linear transformation, singular point
UDC 512.647
MSC 15A69, 14J70, 32S25
DOI 10.20537/vm150108
Received 16 January 2015
Language Russian
Citation Seliverstov A.V. Cubic forms without monomials in two variables, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2015, vol. 25, issue 1, pp. 71-77.
  1. Latypova N.V. Independence of error estimates of interpolation by cubic polynomials from the angles of a triangle, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 2011, vol. 17, no. 3, pp. 233-241 (in Russian).
  2. Latypova N.V. Error of interpolation by sixth-degree polynomials on a triangle, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2013, no. 4, pp. 79-87 (in Russian).
  3. Rodionov V.I. On application of special multivariate splines of any degree in the numerical analysis, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2010, no. 4, pp. 146-153 (in Russian).
  4. Horn R.A., Johnson C.R. Matrix analysis, Cambridge University Press, 1986, 575 p. Translated under the title Matrichnyi analiz, Moscow: Mir, 1989, 655 p.
  5. Hu S., Qi L. The E-eigenvectors of tensors, Linear and Multilinear Algebra, 2014, vol. 62, no. 10, pp. 1388-1402. DOI: 10.1080/03081087.2013.828721
  6. Cartwright D., Sturmfels B. The number of eigenvalues of a tensor, Linear Algebra Appl., 2013, vol. 438, no. 2, pp. 942-952. DOI: 10.1016/j.laa.2011.05.040
  7. Shao J., Qi L., Hu S. Some new trace formulas of tensors with applications in spectral hypergraph theory, Linear and Multilinear Algebra, 2015, vol. 63, no. 5, pp. 971-992. DOI: 10.1080/03081087.2014.910208
  8. Evdokimov A.A., Kochemazov S.E., Otpushchennikov I.V., Semenov A.A. Study of discrete automaton models of gene networks of nonregular structure using symbolic calculations, Journal of Applied and Industrial Mathematics, 2014, vol. 8, no. 3, pp. 307-316. DOI: 10.1134/S1990478914030028
  9. Prasolov V., Solovyev Yu. Elliptic functions and elliptic integrals, Translations of Mathematical Monographs, Book 170, American Mathematical Society, 1997, 185 p. Original Russian text published in Prasolov V.V., Solovyev Yu.P. Ellipticheskie funktsii i algebraicheskie uravneniya, Moscow: Factorial, 1997, 288 p.
  10. Artebani M., Dolgachev I. The Hesse pencil of plane cubic curves, Enseign. Math., 2009, vol. 55, no. 3/4, pp. 235-273. DOI: 10.4171/LEM/55-3-3
  11. Emch A. On a new normal form of the general cubic surface, Amer. J. Math., 1931, vol. 53, no. 4, pp. 902-910.
  12. Emch A. Properties of the cubic surface derived from a new normal form, Amer. J. Math., 1939, vol. 61, no. 1, pp. 115-122.
  13. Grigor'ev D.Yu. The complexity of the decision problem for the first order theory of algebraically closed fields, Mathematics of the USSR. Izvestiya, 1987, vol. 29, no. 2, pp. 459-475. DOI: 10.1070/IM1987v029n02ABEH000979
  14. Gershgorin R.A., Rubanov L.I., Seliverstov A.V. Easy computable invariants for hypersurface recognition, Information Processes, 2014, vol. 14, no. 4, pp. 365-369 (in Russian).
  15. Morozov A.Yu., Shakirov Sh.R. New and old results in resultant theory, Theoret. and Math. Phys., 2010, vol. 163, no. 2, pp. 587-617. DOI: 10.1007/s11232-010-0044-0
  16. Chistov A.L. An improvement of the complexity bound for solving systems of polynomial equations, J. Math. Sci. (New York), 2012, vol. 181, no. 6, pp. 921-924. DOI: 10.1007/s10958-012-0724-4
  17. Håstad J. Tensorrank is NP-complete, J. Algorithms, 1990, vol. 11, pp. 644-654. DOI: 10.1016/0196-6774(90)90014-6
  18. Oeding L., Ottaviani G. Eigenvectors of tensors and algorithms for Waring decomposition, J. Symbolic Comput., 2013, vol. 54, pp. 9-35. DOI: 10.1016/j.jsc.2012.11.005
  19. Gashkov S.B., Shavgulidze E.T. Representation of monomials as a sum of powers of linear forms, Moscow Univ. Math. Bull., 2014, vol. 69, no. 2, pp. 51-55. DOI: 10.3103/S0027132214020028
Full text
<< Previous article
Next article >>