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Introduction

We consider linear discrete-time systems under state constraints with conflicting controls,
where the aim of the first one is to steer the trajectory onto a given terminal set at a given instant
without violating the state constraints; the aim of the other is opposite. We deal with two control
problems under uncertainties: the approach problem and the evasion problem.

There are known approaches to solve problems of this kind based on construction of set-
valued solvability tubes [1-4]. Since such tubes can be calculated exactly only in rare cases,
various numerical methods have been developed, in particular using unions of a lot of points or
polytopes with many vertices and faces [2—6] (here and below we mention as examples only some
references from a lot of publications; the appropriate references can be also found in them). But
the methods for obtaining the most accurate approximations of sets can require large calculations.
Therefore a group of methods is based on estimating sets by domains of simple fixed shape such
as ellipsoids [2,3,7-10] or parallelepipeds/parallelotopes [11-14].

In particular, constructive schemes to solve approach problems were developed through ellip-
soidal techniques [2, 3, 8]. Polyhedral techniques using parallelotopes were developed to solve
the approach problems [15], including the case with state constraints [16], and then for evasion
problems [14,17]. The devised polyhedral techniques were successfully applied to solve some
aircraft control problems with disturbances [6, 14, 18].

In the paper, we present techniques to solve the terminal evasion problems for linear discrete-
time systems under state constraints. The common solution scheme is considered basing on
construction of solvability tubes. Then, under appropriate assumptions on the terminal set and
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on the sets that bound the controls and that define the state constraints, we present much more
quick and simple for realization method basing on polyhedral tubes (the tubes with parallelepiped-
valued or parallelotope-valued cross-sections). Control strategies are determined by these tubes
via explicit formulas. For completeness of exposition and convenience of comparison of the used
constructions we recall similar results concerning the approach problems. The whole parametric
families of external and internal polyhedral estimates for the solvability tubes for both problems
are presented and compared. Here each polyhedral tube can be calculated independently of
the others by recurrence relations that involve elementary polyhedral estimates for results of
operations with sets. New helpful properties of elementary estimates are presented. The method
for solving the approach problem developed by the author earlier is investigated here in more
detail. In particular, for the case without state constraints, guaranteed estimates are found for
the trajectory that ensure that it is inside the tube. Convenient sufficient conditions are given to
guarantee the obtaining of nondegenerate cross-sections during the calculations. An illustrative
example is given.

Among other interesting results connected with solving control problems under uncertainties
and evasion problems we also note [19,20].

Let us introduce the notation used below. Let R" stand for the n-dimensional vector
space; (r,y) = x'y be the scalar product for z,y € R"; T denote the transposition symbol;

|2]|se = maxj<i<, |z;| stand for the maximum norm of the vector z = (71,...,7,)' € R
et = (0,...,0,1,0, ...,0)" be the unit vector oriented along the axis x; (the unit stands at
position 7); e = (1,1, ...,1)". Inequalities <, <,>, > for vectors are understood component-

wise. Denote by R”*" the space of real mxn-matrices A = {a’} = {a’} with elements
and columns a’, where the superscript is used to enumerate the columns, and the subscript is
used to enumerate vector components. Let 0 be the zero matrix (vector) and [ be the identity
matrix. By diag 7, diag {m;} we denote the diagonal matrix A with diagonal elements a! = m;,
where 7; stand for the components of the vector 7. A matrix A € R™*" is called nonsingular if

det A # 0. Set Abs A = {|a!|} for A = {a!} € R™". Let ||I|s = max S |4/| denote the
_Z_mjzl

matrix norm for I' = {1/} € R™*", and G"™*" = {I" € R™" | ||l'||sc < 1}. The set of interior
points of the set X C R" is denoted by int X. We deal with following operations with sets:
Minkowski’s sum (or geometrical sum) X' + X? = {y| y = z' + 2% 2% € X*}, Minkowski’s (or
geometrical) difference X'—X? = {y|y + X? C X'}, affine transformation, intersection, and
complement R"\ X = {x € R" |z ¢ X}. Let p(I|Q) = sup{l" x| x € Q} be the support function
of @ C R”. The symbol sign z stands for the function with values —1, 0, 1 for 2 < 0, z = 0,
z > 0 respectively. To be short, we write k = 1,..., N instead of £ =1,2,..., N.

§ 1. Statement of the problems

We deal with the linear discrete-time system (z € R")
zlk] = Alk]z[k — 1] + Blk]ulk] + C[k]v]k], k=1,...,N, (1.1)
with the given terminal set M C R™ and controls u[k] € R™ and v[k] € R™ subjected to
ulk] € R[k], wv[k] € Q[k], k=1,...,N, (1.2)

where R[k|, Q[k] are given sets. We call the functions u[-] and v][-| satisfying (1.2) admissible.
The system may be complicated by state constraints determined by the given sets Y[k] C R".
The matrices A[k] € R"*", Blk] € R"*", C'[k] € R"*"™ are given.

Throughout the paper we accept the following assumption and don’t mention it anymore.
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Assumption 1.1. All matrices A[k] are nonsingular; R[k], Q[k], and M are convex compact sets;
YV[k] are convex closed sets.

The controls u and v have different aims, which may be called approach and evasion. The
aim of u is to ensure x[N] € M and

z[k] € VK] CR", k=0,...,N—1. (1.3)

The aim of v is to ensure either z[N]| ¢ M or violation of (1.3) for some k£ € {0,..., N — 1}.

There are well known approaches [1,2], which allow to solve such problems using special
tubes W[-| and W[| (or W[-]), i.e., multi-valued functions with set-valued cross-sections W[k]
and W[k] (or W[k]), k = 0,..., N. Let us formulate the corresponding problems.

Problem 1 (approach problem). Find a solvability tube W|-] satisfying W[N] = M and
WIk] C V[k], k = 0,..., N, and a feedback control strategy u = u[k, z] with u[k,z] € R[]
such that each solution z[-] to

zlk] = Alk]z[k — 1] + Blk]ulk, z[k — 1]] + C[k|v[k], k=1,..., N, (1.4)

that starts from any z[0] = z° € W[0] would be inside W[] (z[k] € W[k], k = 1,...,N)
whatever are admissible functions v|[-] subjected to (1.2).

Problem 2 (evasion problem). Find a tube WI[-] (or W[.]) with W[N]=M (W[N]=R" \ M) and
a feedback control strategy v = v[k, z] with v[k, 2] € Q[k] such that each solution z[-] to

(k] = Alk|a[k — 1] + BlkJulk] + C[kJv[k, 2k —1]), k=1,... N, (1.5)

that starts at 2[0] = 2° ¢ W[0] (z° € W[0]) would satisfy one of two following conditions: either
xlk] € WIk] (x[k] € WIK]), k =1,..., N, or z[k] ¢ V[k] for some k € {0,..., N — 1} whatever
are admissible functions v]-] subjected to (1.2).

The above tubes are not uniquely determined by the above conditions. Below, we use the
notation W[-], W[-], W[| for the tubes that are maximal, minimal, maximal (with respect to
inclusion) respectively; we have W[k] = R\ W[k]. Exact calculation of such tubes is, as
a rule, quite cumbersome. Therefore let us set, similarly to [15-17,21], polyhedral approach
and evasion problems whose solutions are based on construction of tubes P[] and P*[-] with

parallelotope-valued or parallelepiped-valued cross-sections. We call them polyhedral tubes.

Assumption 1.2. The terminal set M is a parallelepiped M = P(p;, Pr, m) = Plps, Pr]; the

constraining sets R[k] and Q[k| are parallelotopes R[k] = P[r[k], R[K]|, Q[k] = P[q[k], Q[K]]

with R[k] € R™>nu, Q[k] € R™>*"; Y[k] are either zones or V[k] = R" (the equality V[k] = R"
means that there are no state constraints at time k).

By a parallelepiped P(p, P,m) C R™ we call a set of the form P = P(p, P,7) = {z € R" |
r=p+ Pdiagm - (, [|(||ec < 1}, where p € R"; P = {p'} € R™ " is a nonsingular matrix
with ||p’]]s = 1; # € R™, © > 0. To simplify formulas the conditions ||p’||s = 1 for the Euclidean
norm can be omitted. We say that p is the parallelepiped center, P is the orientation matrix.
A parallelepiped is said to be nondegenerate if = > 0.

By a parallelotope Plp, P] C R™ we call a set of the form P = P[p, P] = {z | x = p+ P(,

I¢llse < 1}. Here p € R", P = {p'} € R™™, where m < n. A parallelotope P is said to be
nondegenerate if m = n and det P # 0.
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By a zone (or m-zone) S = S(c, S,0,m) C R" we call a set that is an intersection of m < n
strips ' § = S(c, S,0,m) = X4, X = Xy, s, 04) = {z | |(z,5") — ¢;| < 0;}. Here ¢ € R™;
i=1

S = {s'} € R™™, where vectors s’ are linearly independent; o € R™, o > 0.

Any parallelepiped P(p, P, ) is, in fact, a parallelotope P[p, P], where P = Pdiagm.
Any nondegenerate parallelotope P = P[p, P] is a parallelepiped P = P(p, P,e), where
e=(1,...,1)". Any parallelepiped is a zone, and vice versa for m = n (see [12, 13]).

Sometimes we also accept the following assumption.

Assumption 1.3. The terminal set M is a nondegenerate parallelotope, i.e., det P # 0.

Problem 3. For system (1.1)—(1.3) under Assumptions 1.2, 1.3 find a polyhedral tube P~ [-] with
P~[N] = M and P~ [k] C V[k], k =0,...,N — 1, and find a corresponding feedback control
strategy u = ulk, x] satisfying ulk, z] € R[k], k = 1,..., N, such that every solution z[] to (1.4)
that starts at 2[0] = 2° € P~[0] would be inside P[] (z[k] € P~ [k], k =1,..., N), whatever is
an admissible v[-]. Moreover, describe a family of such tubes P~ [-].

Problem 4. For system (1.1), (1.2) with the given sets )[k] under Assumption 1.2 find a polyhe-
dral tube P*[-] with P*[N] D M and find a corresponding feedback control strategy v = v|k, «]
satisfying v[k,z] € Qlk], k = 1,..., N, such that every solution x[-] to (1.5) that starts at
z[0]=2° ¢ P*[0] would satisfy one of two following conditions (either (1.6) or (1.7)):

z[k] ¢ P*[k], k=0,...,N, (1.6)
xlk] ¢ Y[k] forsome k€ {0,...,N—1} (1.7)

whatever is an admissible u[-], i.e., either the trajectory would be outside P*[-] and therefore
x[N] ¢ M or the constraints (1.3) would be violated. Describe a family of such tubes P*[:].

Thus the set W~ [0] = |J P~ [0], where the union is taken over the tubes P~ [-] from Problem 3,
is a subset of the set W[0] from Problem 1 of all initial points z° for which the aim of the control
u is achievable.

Similarly, the set W+[0] = () P*[0], where the intersection is taken over the tubes P*|[]
from Problem 4, serves as an external estimate for the set W[O] from Problem 2 such that the set
W[0] = R™ \ WJ[0] is the set of all 2° for which the aim of the control v is achievable.

Thus we have [ JP~[0] € W[0] € W[0] € NP*[0].

Below we also describe other families of external estimates P[] for W[:] and internal esti-
mates P[] for W[-] so that W[0] € (P *[0] and |JP~[0] € W]0).

§ 2. Elementary polyhedral estimates for operations with sets

Solutions to Problems 3 and 4 can be found using elementary polyhedral estimates for opera-
tions with sets. For convenience let us recall the main constructions to be used.

The Minkowski difference @ = P!-P? of the parallelepiped P! = P(p!, P!, 7!) = P[p!, P]
and the parallelotope P? = P[p?, P? is either a parallelepiped or an empty set. Namely, set 79 =
ml — (Abs ((P1)~1P?))e. Then, similarly to [12, Lemma 3.15], we have Q = P(p' —p?, P!, wdif)
if 74if > 0; otherwise Q = @. In terms of parallelotopes, set 7 = e — (Abs ((P')"'P?)) e. Then
Q = P[p' — p?, Pldiag n*] if 7 > 0; otherwise Q = &.

The set P~ (P71) is called internal (external) estimate for @ C R" if P~ C Q (P D Q).
The so called touching external estimate Py;(Q) for the set Q with the orientation matrix V' is
defined by the relations p((V 1) Te!|PH(Q)) = p(£(V 1) Te'|Q), i = 1,...,n, and can be
found using values of the support function for Q [12,13]. We define Pi.(2) = @.
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The touching external estimate P = P{,(Q) for the Minkowski sum Q = P! + P? of the
parallelepiped and the parallelotope is calculated [12] by the formula

Py(P'+P*) =Pp' +p" V,(Abs (VI P)) 7' + (Abs (V7 P%))e) =
2

=Plp' +p',V - diag (O (Abs (V7' P¥))) e].
k=1

Recall the formulas for operating with empty sets to be used below: X + @ = @, I—X = &,
X-og=R",XNo=2,XUg=X,R"\@g=R", A-0=0.

Consider the operations of the type X = (Pl- 773) +P?and X = (P! 4+ P2)-P3, called
in [8] geometric difference-sum and geometric sum-difference, and external estimates for them:
X C P, X C Pt. Note that we have X C X due to [22, (3.1.13)].

Lemma 2.1. Let P' = P(p', P',7"), P* = PPp* P", k = 2,3, and X = (P'—P?%) + P2,
= (P! + P?)—P3. For arbitrary nonsingular matrix V, let

P = PU(X) = PL(P'-P) + P?),  P" = PU(P + PP,
and

VO =1t — (Abs ((PY)7'P*))e, v = (Abs(V'P")) 1’ 4 (Abs(V'P?))e;
= (Abs (V_lPl)) ot 4 (Abs (V_1P2)) e — (Abs (V_lp?’)) e.

We have X C P* and obtain P+ = P(p' + p* — p*, V,v) for 1° > 0, otherwise X = P* = &
We have X C P{(X) C PT and obtain PT = P(p' + p* — p*,V, ) for 0 > 0, otherwise
X = Pt = @. For the case 1° > 0, under special choice V = P', we obtain P+ = PT.

For two parallelepipeds PLY and PY? such that PYt C PY2, the following inclusion holds
for the estimates P! = Py (P -P?) + P?) and P+? PJF(771 2 4 P?)—P3 corresponding
to one the same orientation matrix V: P+ C P+2,

Proof The statements concerning X, P* and formulas for P+ follow from the above. The
inclusion X C P is clear, and P7;(X) C P+ follows from [12, Lemma 3.4]. The formulas for v
and © under V = P! give P* = P*. The inclusion P™* C P*+2 can be obtained using inclusion
monotonicity for the involved set operations, the relation (P'?~P?%) + P? C (P2 4 P?)—P?
(see [22, (3.1.13)]), and Py ((P'2 4+ P?)-P3) C P2, which is similar to P*( yc Pt O

An internal parallelotope-valued estimate for the sum Q = P! + P? of two parallelotopes
Pk = P[p*, P*] with P! € R™", P? € R™" can be found [13, Lemma 3.1] in the form
P = P;q FQ(Pl + 732) — P[pl +p2,P1F1 + pQFQ], where ! c gnxn, 12 c grxn'

The above matrices V, 'L, T'? serve as parameters generating families of the estimates.

Originally, it is unclear how to choose I'!, I'? to single out nondegenerate internal estimates
P~ =Pnp (P! + P?) for Q@ = P! + P? if P! is a nondegenerate parallelotope.

Proposition 2.1. Let P* = P[p", P¥, k = 1,2, P* € R™™", P? ¢ R™", and det P! # 0.
Let P~ = P[p~,P7] = P (P' + P?) be internal estimate for P' + P* determined by arbi-
trary T € G, Sety = (Abs ((PY)~'P?)) e. 4 sufficient condition for P~ to be a nondegenerate
parallelotope (parallelepiped) for any I' € G"™" is v < e. Under this condition, we have
| det P| > [det P'[ - [J(1 = 7).
i=1
Also, if det P' # 0, then for Pl;PQ_the same condition v < e guarantees nondegeneracy of
the parallelotope P*—P? = P[p' — p?, Pldiag (e — 7).
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Proof We have P-=P'+P?I'=P'(I+(P")"'P°T'). Therefore, to obtain the inequality
for det P, it is sufficient to apply [17, Lemma 1]. Other statements are clear from the above. [

Estimates for P (S, where P is a parallelepiped and S is a zone, can be constructed by
different ways. Let us mention only some of them.

Below, for external estimates of the intersection of a parallelepiped P and a set O, we will use
the notation 15;;(77 () Q) for any external (not necessarily touching) estimate for P () Q with the
orientation matrix V. We only suppose that ﬁ;(P N Q) 2 P()Q and we put PJ‘;(P NQ) =P
if P C Q, and also we put 15;;(79 Q) = @ if it is already known that P (| Q = &. We call V

admissible if there are known formulas for constructing 15;;(79 (1 Q) under V. Some ways for
constructing such estimates are indicated below.

So, for example, for the intersection @ = P! [ P? of two parallelepipeds P*=P(p*, P* 7*)
one can find parallelepiped-valued estimates 13;;(@) with arbitrary V' using explicit formulas
[12, Lemma 3.14]: P,(P'(P?) = P (PY) N P (P?). Note two heuristic ways to choose V'
here: put either V' = P (choice I) or V' € Argmin y.¢(p1 peyvol 13:;(771 N P?) (choice II).

For the intersection @ = P ()X of a parallelepiped and a strip, one can find touch-
ing estimates P;(P(\X) using explicit formulas for n + 1 specific orientation matrices
V e {P P ..., P"} that appear due to [11] (such estimates are obtained by neglecting one
of n + 1 so called tight strips, which form P (] %; P stands for the orientation matrix of P).

Let S = () X' be an intersection of several strips. For some orientation matrices V' the

i=1
estimates ﬁ‘t(P (S) can be found by explicit formulas sequentially via m steps on the base of
the mentioned estimates:

PHO=P; PH=PL (PRI i=1..m PUPNS) =Pt (20)

where V' = P*™ is equal to the orientation matrix of P*™. To choose the orientation matrix P+
on the step 4, one can, for example, either set PT¢ = P*i~! (we call these Choice I) or use the
arguments of local volume optimality [11] (we call these Choice III).

Some ways of constructing internal estimates P, ,(Q) with centers v € int Q and arbitrary

orientation matrices V for @ = P S, S = ) X, can be found in [13, Sec. 3], [16, Sec. 2].
=1 _
To check whether a point = belongs to the nondegenerate parallellotope Plp, P] or to the
parallelepiped P(p, P, ) it is useful to use relative coordinates (=P~ (x—p), &=P~1(z—p).

Lemma 2.2 (see [17], [21, Lemma 1]). Let * € R™. Given P = Plp, P], det P # 0, let
(=P Yo —p). Thenx € Piff Abs¢ < eandx ¢ P iff |¢i.| > 1 for some i, € {1,...,n},
i.e, ||¢|leo > 1. Given P = P(p, P,7), let ¢ = P~Y(x —p). Then x ¢ P iff |&.| > m;, for some
i€ {l,...,n}.

§ 3. Solving approach problems 1 and 3

The solution to Problem 1 is known. To remind it, consider the recurrence relations

Wk — 1] = A[E]H ((W[K]=C[k]Q[K]) + (=BIKR[K])) N Y[k — 1],
k=N,...,1, W[N] =M.

Theorem 3.1 (sce, for example, [16]). Problem 1 is solvable on the time interval [0, N| if sys-
tem (3.1) has a solution such that W[k| # &, k = N,...,0. Then this tube W|-| from (3.1) is
a maximal solvability tube and it gives a solution to Problem 1 with any control strategy ul-, -]
satisfying ulk, ] € Uk, z] = R[k]{u | Blklu € (W[k]-C[k]Q[k]) — Alk]x}, where we have
Uk, z] # @ for any x € W[k — 1].

3.1)
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The solution to Problem 3 can be, in fact, extracted from [16, Theorem 3.1]. Consider
parallelotope-valued tubes P~[-] = P[p~[-], P~[]] that satisfy the following relations:

P [k — 1] =P [k]-C[k]Q[k], k=N,...,1,
Pk —1] = AR Py (P [k — 1)+ (=B[kR[K]), k=N,....1,

(3.2)
o[k if PY[K] C Y]k
p={” K Pl_”—y[ ) . k=N-1,...,0, P[N]=M.

P - (PN YIE]) otherwise,
Here I'[:], P[], p~|-] are parameters that are assumed to be admissible, i.e.,
Lkl e G" " k=N,...,1, detP [k]#0, p [k] €int(P"[k]OV[k]), k=N-1,...,0.

Let this system be solved for some fixed admissible parameters. Consider following control
strategies, where relative coordinates with respect to the cross-sections of P'~[-] are used:

u! [k, 2] = r[k]+R[EIN [k, 2]D[k]¢ [k—1,2], ¢ [k—1,2] = P [k—1]"Ya—p' " [k—1]) (3.3)

with three variants of the formulas for calculation of M [k, z], j = 1,2, 3:

Mk, 2] = 1/ max{1, [[T[k]¢* [k — 1, 7]} € R, (3.4)
N[k, 2] = diag {1/ max{1, |(T[k]¢* " [k — 1,z]);|}} € R™>", (3.5)
Nk, 2] = 1/ max{1,||¢* [k — 1,2]||} € R, (3.6)

and also
u'lk, 2] = r[k]+R[E]T[k]N [k, 2] [k — 1, 2],

(k- La] =Pk -1 (a—p' [k 1), (3.7)
N[k, 2] = diag {1/ max{1, | [k — 1, 2][}} € R™.
Theorem 3.2. Let system (1.1)—(1.3) be considered under Assumptions 1.2, 1.3. Let T'[], P~[],

p~[+] be arbitrary admissible parameters and, when solving system (3.2), the following relations
be satisfied:

7 K20, v K= (Abs(P- K CIHQK))e, k=N, 1 (8)

det P'"[k] #0, k=N -—1,...,0, (3.9)

it (PUROVK) £9, k=N—1,...0. (3.10)

Then system (3.2) determines the tubes P~[-| = Plp~[-], P~[]] and P*~[] = P[p*~[], P []]
with nondegenerate cross-sections, P~[-] is an internal estimate for W[ (i.e., P~[k] C W[k],

k=0,...,N), and P~|:| together with each of four control strategies (3.3)-(3.7) gives a par-
ticular solution to Problem 3; for every initial point x[0] = z° € P~[0] all these control strate-
gies u[-, -] turn out to coincide with ul-,-] determined by the formulas

ulk, z] = r[k] + R[k|T[k]C [k — 1, 2], (3.11)

where ('~ [k — 1,z is defined in (3.3), and we have z[k] € P~[k], k=1,...,N.

Proof For u! with (3.4), the theorem is a special case of [16, Theorem 3.1], where the

formulas for tubes given in [16] follow from the formulas for P'=P* and P; (P! + P?).
The proof for u?, u3, and u* is similar to [16]. All these v’ satisfy w/[k,z] € R[k] for ev-
ery # € R™, and it suffices to take into account that if x € P~ [k — 1] C P~ [k — 1], then
Ik —1,2])] <[|¢*[k — 1,2]||c <1 and we come to (3.11). O
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Let us investigate properties of the above tubes in more detail. Introduce a notation:
a”[k] = (Abs (PT[K] " B[k|R[K])) e, v~ [k] = (Abs (P~ [k]"'C[K]QK])) e.
Proposition 3.1. Specific formulas for the matrices of the parallelotopes in (3.2) are
P [k — 1] = P [k] diag (e—v " [k]), P [k —1] = A[k]"Y(P° [k — 1]-B[k|R[K]T[K]). (3.12)

Theorem 3.2 is also true under conditions (3.13), (3.10), i. e., if relations (3.8), (3.9) are replaced
by (3.13):
e—~vy [kl —a[k] >0, k=N,... 1L (3.13)

Here the relation e—~~ k] > 0 guarantees nondegeracy of P°~ [k — 1] and e — v~ [k] — a"[k] > 0
gives a sufficient condition for P'~|k —1] to be a nondegenerate parallelotope for any
I'[k] € Gr==m.

Proof Relations (3.12) follow from the formulas for P'—P? and P; .(P'+P?). Note that
(3.13) implies that e — y~[k] > 0. Then, using (3.12) and Proposition 2.1, the sufficient condition
for nondegeneracy of P; 1, (P°~[k — 1] + (—B[k]R[k])) can be presented in the form

e > (Abs ((diag (e —y~[k])) "' P~ [k] 7" BIK] R[K])) e = (diag (e — 7~ [k])) "o~ [K].
The obtained inequality turns out to be equivalent to (3.13) and entails (3.8), (3.9). 0

Remark 3.1. Note, similarly to [16, Remark 3.3], that conditions (3.13) can be especially useful
for systems obtained by Euler’s approximations of differential systems.

Theorem 3.3. Let system (1.1), (1.2) without state constraints (1.3) be considered under
Assumptions 1.2, 1.3.  Let T[] be arbitrary admissible parameter, and when solving sys-
tem (3.2) with Y[k| = R", relations (3.8)~(3.9) (or (3.13)) be satisfied, and, therefore, the
tube P~[-] =P[p~[], P[] with det P~[k] # 0 be constructed. If x| is the trajectory
that corresponds to an arbitrary initial point z[0] = 2° € P~[0], to any of four strate-
gies uw[-,-] from (3.3)-(3.7), where ('"[k — 1,z]| should be replaced by (~[k — 1,z] =
= P~ [k—1]"Yx—p~[k—1]), and to arbitrary admissible control v[-], then we have xz[k] € P~ [k],
k = 1,...,N, and, moreover, the following guaranteed estimates in terms of relative coordi-
nates (~[k] = P~[k]"*(z[k] — p~[k]) are valid that ensure that x[-] is inside the tube P~ |']
and x[N] € M:

k
Abs( [k] <e— Hdiag (e—=~7[l])-(e—Abs¢7[0]), k=1,...,N. (3.14)

=1

Proof Wehavee—Abs( [0] > 0 due to z[0] € P~[0] and Lemma 2.2. Following the scheme
of the proof of [15, Theorem 3] we can obtain the next inequalities for components of (~[k] at
each time step k € {1,..., N}:

G IR < (U= K]]G R = U+ [ =1+ (U= [KD) - IGT [k = 1] = (1 =5 [k]) =
=1= (= [k])- (1= I¢ [k =11,

|

which lead to e — Abs ([k] > [] diag (e — vy~ [l]) - (e — Abs ~[0]) > 0. O

=1
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Let us describe external estimates for VV|-]. Consider the polyhedral tubes that satisfy

POtk — 1] = PT[k]-C[k]Q[k], k=N,...,1,
Pk —1] = A[k]” 1P;1+ . 1](P°+[k 1]+ (=B[k|R[K])), k=N,...,1, (3.15)
7)+[]{I—1]:13;+[k71}(7)1+[ —1]ﬂy[ _1]>7 k:N7"'717 P+[ ] PltﬂN}(M)u

where
Pl =P [, PT]a"]) = PWH L

PHL =P ™[], PYL]w []) = P[], PL

P[] =P L], PULL A" []) = P[], PYTL)
Note that in the second line of (3.15), the value of the orientation matrix of P'* [k — 1] is equal
to A[k]"1PIF [k — 1];

PH[N] = P(pe, PT[N], (Abs (PT[N]'P})) m) = Plps, PT[N]diag ((Abs (PT[N]7' 7)) e)].
So, (3.15) describe a family of polyhedral tubes generated by the admissible matrix func-

tions P[], P'*[]. The following statements follow from the comparison of (3.15) with (3.1)
and from the properties of the elementary estimates from Sec. 2.

Proposition 3.2. Let system (1.1)~(1.3) be considered under Assumption 1.2, the tube W|-| be
determined from (3.1), and P*[-| be determined from (3.15) for arbitrary nonsingular matri-
ces P'[k], k = N —1,...,0, and admissible matrices P*[k], k = N,...,0. Then P*[] is
external estimate for W[ (i.e, W[k] C PT[k], k = N,...,0), and if Pt[k| = & for some
ke {N —1,...,0}, then Problem 1 is unsolvable on the time interval [0, N|.

§ 4. Solving evasion problems 2 and 4

To solve Problem 2 let us consider the following system of recurrence relations for construc-
tion of the tubes W[-], WY[-], and W'[-]:

WOk — 1] = W[k] + (-B
WHE — 1] = A[K] YOk — 1
WK =W'K NV, &
and the corresponding control strategies:

ko] € {wk, 2] = Qz] N{v | ClkJv € (R™\VAO[k — 1])—A[kJa} for = ¢ Wik — 1],
Q[k], otherwise.

[KIRK]), k=N,... 1,
]- L, 4.1)

I
=
|

(4.2)

Theorem 4.1. Let W[, W°[|, and W'[] satisfy (4.1). Then W]| together with any control
strategy v[k, x| that satisfies (4.2) gives a solution to Problem 2, and the tube W|:| is minimal.

Proof Let us construct WV starting from k = N. Suppose WI[k] is constructed.
Then W[k — 1] cannot be greater than the set of points x for which either = ¢ Y[k —1] or
there exists v € Q[k] providing A[k]z + Blklu + C[k]v € W[k] for any admissible u € R[k],
i.e., be greater than the set W = A[k]~'((W[k]=B[k|R[k]) + (=C[k]Q[K])) UR™ \ Y[k — 1]).
Therefore we can consider the relations
WUk — 1] = W[k]-B[k|R[K],
Wk = 1] = ARV [k — 1] + (=C[K]Q[K)), k=N.....1, (4.3)

Wik = 1] =W'k = 1] JR"\ Y[k —1]), k=N,....1, W[N] =R"\ M.
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Let a solution to (4.3) be found. Consider a trajectory z[-] with 2[0] € W[0]. For some
ke{l,...,N},leta[k—1] € W[k —1]. Then if 2[k — 1] ¢ Y[k — 1], then a condition from (1.7)
is satisfied for k — 1, the aim of v is achieved, and we don’t need to construct v later or we can
apply any v[k] € Q[k]. If z[k — 1] € Y[k — 1], then, according to (4.3), z[k — 1] € W'[k — 1],
and we can introduce a set V[k,z] = Q[z]{v | C[k]Jv € W°[k — 1] — A[k]x}. Reasoning like
[21, proof of Theorem 1] we can ascertain that V[k, z] # @ for any x € W'[k — 1], and for any
vlk, z] € V[k, x] and arbitrary u[k] € R[k] one has A[k]x + B[k|u[k] + C[k|v[k, z] € WIk]. Thus,
starting from £ = 0 and using such control strategies, one either comes to at least to one of the
aims (1.7) or, having (1.3), comes to z[N] € W[N], i.e., z[N] ¢ M.

It remains to prove that the sets WO[k] = R™\ WP [k], W'[k] = R"\ W'[k], W[k] = R"\ W[k]
satisfy (4.1) and V[k, 2] = V[k, z]. The formulas for WO[k], W' [k], V[k, z] follow from [21, proof
of Proposition 2]. The formula for W[k] follows from the relations of the type

W=R"\W=R"\(WJR"\Y) = R\WHAR'\ R"\Y)) =W'NY. O

Remark 4.1. Empty cross-sections of the tubes are allowed in (4.1). If Problem 1 is solvable (we
have W[k] # @, k = N, ..., 0), then all W[k] are nonempty too and W[k] C W[k|, k= N,...,0,
due to the known relation (X1—X?) + X3 C (X! + &3)—&? [22, (3.1.13)].

Also note that the second line in (4.2) completes the definition of v[k,z] for all z (see
arguments from [21, Remark 4]), but for z[0] € W]0], generally speaking, this can not guarantee
fulfilment of all the desired conditions for x[-].

To solve Problem 4, let us consider a family of polyhedral tubes P[] that satisfy

PUlk—1] = P, (Pl + (~BKIRK])), k=N,...1,

PO+[k—1
Pk — 1] = A WP [k — 1]-C[K]Qk]), k=N,... 1, (4.4)
Pilk—1] = Ppoyy(PH k= NVIk =1]), k=N,....1, PN =P}, (M),

where
Pk = PH* (K], P 7 R) = PIp* R, P A
P[] = P ], PHR) 7 (k) = Pl K], Pk
PYIK] = PO [k, PR A (K) = P K], P (k)]

for nonempty cross-sections. Here P'*[k], P*[k], and P°* [k] may degenerate into empty sets. In
particular, if at some time step 71" [k — 1] < 0 is obtained, then we accept that P [k — 1] = @.
Comparing (4.1) and (4.4) and using inclusion monotonicity we have the following.

Proposition 4.1. Under Assumption 1.2, let 28 U be determined from (4.4) for arbitrary admis-
sible matrix functions P**[-| and P*[-]. Then P*[k] and R" \ P*[k] are external and internal
estimates for W|k| and W|k] respectively for all k = N, ... 0.

Remembering Remark 4.1 it is interesting to compare the polyhedral tubes P[] and P+[]
for a specific choice of the orientation matrices. Using Lemma 2.1 we obtain the following.

Proposition 4.2. Under Assumption 1.2, let the tubes P[] and P*[-] be determined by (4.4)
and (3.15) respectively, where the orientation matrices involved satisfy Pt[N] = P*[N],
Pk —1] = Pk —1], k= N,...,1, P*[k] = P*[k], k = N —1,...,0, and the formu-
las of the type 13;;(77 NY) are identical. Then Pt[k] C P*[k], k = N,...,0. If, in addition,
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I:’OJF [k—1] = P[k], f’H[ 1] = Pt[k], k = N,...,1, then the tubes P*[-] and P*[] coincide:
Ptk]=P*k], k=N,...,0, and thefollowmgformulasfor Ptk — 1] # @ in (4.4) hold
PY [k — 1] = Ak~ PT[k],
[k — 1] = a7 [k] + (Abs (P[] ' Bk R[K])) e — (Abs (P*[k] T C[K]Q[K])) e.
Thus the choice P°*[k — 1] = P*[k], k = N, ..., 1, may have some advantages.

Let us present a particular solution to Problem 4. To simplify formulas let us consider the
tubes P T[] using the mentioned choice PT[k — 1] = P*[k], k= N,..., 1

PY[k—1] = P, (PTK + (~BIKR[K]), k=N....1
Pk — 1) = A[k] (P [k — 1]-C[k]Q[K]), k=N,...,1, (4.5)
Pk —1) = Ppp Pk —YNVE-1), k=N,...,1, PF[N]= Pl (M),
For arbitrary z € R"”, let us consider the following control strategy:
q[k] + Q[k]x[k, ], if Pt[k]# @ and PT[k] £ o,
vlk, ] = { q[k] + Q[k|x?[k, z], if P*[k] 7é @ and P'*[k] = @,
q[k], if P[] =
O [K] = PYRT'CKQIK], [k —1,a] = P** [k' ™ (& —p'* [k — 1)),
Xjlk, x] = sign(@ﬂk])i’* 51gn§ tlk—1,2], j=1,...,n,, (4.6)
iy = iy [k, z] € Argmax {Abs [k — 1, 2] — 71 [k — 1] i € {1,...,n}},
sign (OF[k])! - sign & [k —1,2], if Z-1+ —1,2] #0, .
e L L PR

— i, [k, 2] € Argmax {Abs & [k — 1,2] — al [k —1]|i e {1,...,n}, 71 [k — 1] < 0}.

Theorem 4.2. Under Assumption 1.2, let P*[k], k= N,...,0, be arbitrary admissible orienta-
tion matrices and the tube P[] satisfy (4.5). Then P[] together with any control strategy v|[-, -]
of the form (4.6) gives a particular solution to Problem 4.

Proof Let Pt[] and P'*[] be found and z[0] = z° ¢ P*[0]. If z[0] ¢ P'*[0], then basing
on [21, Corollary 1] about solutions to one-step evasion problem we can see that using of the
control v[1, z[0]] ensures x[1] ¢ P*[1] under any u[1] € R[1]. If 2[0] ¢ P*[0] but z[0] € P'*[0),
then we have z[0] ¢ V[0] because otherwise we get 2[0] € P'[0]V[0] € P*[0], a contradiction.
Therefore we already got (1.7) for £ = 0. Repeating the arguments successively for all k£ =
1,...,N we conclude that for trajectories z|-] with 2[0] ¢ P*[0] we obtain that either x| is
outside P*[-] and z[N] ¢ M, or (1.7) holds for some k € {1,..., N}. O

Remark 4.2. In terms of parallelotopes, the specific formulas for the matrices of the parallelo-
topes P [k — 1] in (4.5) can be presented in the following form:

Pk — 1] = Ak  PT[K] (I + diag &"[k] — diag 4 [k]),
G (k] = (Abs (PT[K] " BIKRIK]) e, 5 (k] = (Abs (P*[K] " ClRIQIK]) e.
Remark 4.3. Using [21, Corollary 1] one can also construct the solutions to Problem 4 basing on
the tubes from the wider family of the polyhedral tubes determined by relations (4.4). Also, for
the tubes with nondegenerate cross-sections one can apply the control strategies that are similar

to v'[k, ] from [17, Theorem 1] and v*[k, z] from [21, Theorem 2], where relative coordinates
of the point x calculated relative to P [k — 1] should be used.
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Remark 4.4. Relations (4.5) define the family of the tubes P[] with the parameter P*[-]. If
concretize a rule to choose P [k] for k<N, we can obtain a subfamily of the tubes determined
only by Pt := P*[N]. Thus we can introduce 4 subfamilies (), [ = 1, ..., 4, corresponding
to the mentioned in Sec. 2 ways to construct estimates 15;;(73 (\S) and to choose V. Namely,
PO corresponds to (2.1) with Choice I, @ to (2.1) with Choice III, P+® and Pt
correspond to 13;;(731 N P?) = Py (P') (N P> (P?) with Choice I and Choice II respectively.

There is some analog of Theorem 3.3, namely, we have the following.

Theorem 4.3 (see [17, Theorem 1]). Let system (1.1), (1.2) without state constraints be considered
under Assumptions 1.2 and 1.3. Let PT[N] be arbitrary nonsingular matrix and, when solving
system (4.5) with Y[k] = R", the relations

et Gtk —AT[k] >0, k=N,... 1,

hold and hence the tube P[] with nondegenerate cross-sections be constructed. If x[-] is the tra-
Jjectory that corresponds to an arbitrary initial point z[0] = 2° ¢ P*(0], to v[-,:] = v'[-,"] from
[17, Theorem 1], and to arbitrary admissible u[-], then we have xz[k] ¢ P*[k], k=1,...,N,
and, moreover, the following guaranteed estimates in terms of relative coordinates ¢t (k] =
— PH[k]"Yx — pT[k]) are valid for k = 1,...,N, that ensure that x[-] is outside P*|]
and z[N| ¢ M:

=

[ =1 2 (I O0oe D TT jmin (14670 =57 1), k=1,..N. @7
=1 - =

Note that (3.14) gives estimates for all components of (~[k], while (4.7) only for 1K) oo
Let us describe internal estimates P~ [-] for W[ ]. Consider the following relations:

POk —1] = m( “[k] + (—B[KIR[K])), k=N,...,1,

f“% 1] = Ak (P [k — 1]=C[k]Q[k]), k=N,... 1, 45
P[k] = {W[]ﬁplmg[%  k=N-1,...0, PIN]=M

P (P[] N VI[k]) otherwise,

where the formulas for the matrices of the parallelotopes P~ [k — 1], P'~[k — 1] in (4.8) are:

A

P [k — 1] = P~[k] — BIK|RK]T[K],

N . . _ (4.9)
Pk — 1) = AR "PY [k — 1] - (diag (e — (Abs (P~ [k — 1]"'C[K]Q[K]))e)).

Proposition 4.3. Under Assumptions 1.2, 1.3, let T[], P[], p~[-] be arbitrary admissible param-
eters, i.e., all T'[k] € G™>*", det P~[k] # 0, p~[k] € int (P~ [k] N V[k]), and let the sets P°~[k],
Pl- k], and 75_[ | turn out to be nondegenerate parallelotopes for all k = N—1,...,0. Then sys-
tem (4.8) determines the tube P[], which is an internal estimate for W[] (e, 73 k] € WK,
k=0,...,N). The simple sufficient conditions for nondegeneracy 0f77O [k — 1] and 771*[1{: —1]
under any T'[k] € G™*™ and det P~[k] # 0 are as follows:

167 koo + 197 [Kllloo < 1, k=N, 1,
G~ [k] == (Abs (PT[K] " B[k|R[K])) e, 47 [k] := (Abs (P~ [k] ' C[K]Q[K])) e.
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Proof Inclusions P~[k] C W][k| and formulas (4.9) are obtained from (4.1) using arguments
of inclusion monotonicity and formulas for the elementary polyhedral estimates. The above
sufficient conditions are obtained using the following lemma. U

Lemma 4.1. Let matrices P! and P? be such that
P'=P - H'T, P?=diag(e— (Abs((P")'H?))e),

where det P # 0, ||T'||c < 1. Denote « = (Abs=)e, == P7'H!, v = (AbsO)e, © = P~1H2
If |a]|oo + |V]|oo < 1, then both det P! # 0 and det P? # 0.

Proof Proofis based on the theorem from [23, Sec. 7.1] which says that if || - || denotes any
matrix norm for which ||I|| = 1 and if ||M]| < 1, then (I + M)~ exists and ||(I + M)7!||
< 1/(1 — ||M]||). Nonsingularity of P! follows from the relations P! = P(I — =), |||«
< |Z]|oe 1 = |l@|loo < 1. Nonsingularity of P? follows from the relations

<
<

(PY~'H? = (I — =I)'e,
[(Abs (P) T H?)) efloo < (I =E0) Moo - €]l - 1 < 1/(1 = [lalloc) - [Mloe < 1. O

In the next Sect. 5, we consider an example to illustrate the following theoretically proved
general situation. Suppose one has constructed several pairs of tubes P~¢[-], P1=[.] using (3.2)
and several pairs of tubes P4[-], P1*F[] using (4.5). Given z[0] = 2°. If z[0] € |J, P[0,
then usage of u based on P—%+[-], P!~ -] such that z° € P~*+[0] ensures z[N] € M and (1.3).
If 2° € J4(R™ \ P7[0]), then usage of v based on P+5+[], P1+5[] such that 2° ¢ P*[0]
guarantees either z[N] ¢ M or z[k] ¢ V[k] for some k € {0,..., N — 1}.

Remark 4.5. Suppose one has constructed several pairs of the tubes P*#[.] and P'+#[] us-
ing (4.5). Then the evasion aim (i.e., z[N] ¢ M or z[k] ¢ V[k] for some k € {0,..., N —1}) is
also achievable for each initial point ° from the set (|J,(R™\P'*7[0])) J(R™\Y[0]), which, gen-

erally speaking, can be greater than the mentioned set [J,;(R" \ P+2[0]) if Y[0] # R™. Note that it
is very easy to check whether z° belongs to the zone )[0] or not. Similarly, the approach aim (i. €.,
z[N] € M under (1.3)) is achievable for each initial point z° from the set (|, P*~*[0]) (" V[0,
which can be greater than the mentioned set | J,, P~*[0].

§5. Example

Let n = 2 (for ease of visualization). Consider the system obtained by the Euler discretization
of a differential one determined on a time interval [0, 6]:

01
-8 0

Qlk] =P(0,1,02) CR', M =7P((-0.5,0)",1,(0.5,05)"), hy=0/N, =2, N =200,

Akl =T+ hy - { ] Blkl=hy-(0,1)T, R[k]=P(0,1,1) CR, C[k] =hy-(1,0)7,

under the state constraints of the form |z; + 0.2 < 0.8, |z2| < 2.1.

We have found three tubes P[] as in [16, Example 5.1] and four tubes P[] of each
subfamily PO, 1 =1,..., 4, from Remark 4.4 taking matrices P;" as in [24, Sec. 4].

In Fig. 1, the set M and state constraints are shown by dashed lines. The cross-sec-
tions P~*[0] are presented by thin lines (see also [16, Fig. 2]), P21 [0] by thick lines.

Namely, the cross-sections P80 [0] for [ = 1,2,3,4 are presented in Fig. 1, a, Fig. 1, b,
Fig. 1, ¢, Fig. 1, d; their volumes are equal to 1.6486, 2.7237, 3.5673, 2.6630; 1.8938, 2.8815,
3.3774, 3.0197; 1.6509, 2.8025, 3.8901, 2.7295; 1.6509, 3.0099, 3.7256, 2.7510 respectively. The
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3.5 3.5
3.0t 3.0t
2.5¢1 2.5¢
2.0¢ 2.0¢
1.57¢ 1.5¢
1.0t 1.0t
~ 0571 ~ 0571
= 0.0t = 0.0t
—0.5¢ —0.5¢
—1.0¢ —1.0¢
—1.5¢ —1.5¢
—2.0¢ —2.0¢

—2.5 —2.5

3.0 -3.0
—9 —2

a b c d

Fig. 1. Results of polyhedral synthesis for 4 initial points %" using u from (3.6) based on P~(:]
and v based on the tubes PT#U[] from P+1) (a), P+ (b), PTG (¢), P+@ (d)

volumes of the sets P7[0] constructed as in [24, Sec. 4] for the case without state constraints
are equal to 2.4397, 3.5118, 3.8901, 3.3877 (see also [24, Fig. 1(a)]). The minimal sets for each
series over 3 correspond to the tubes with P = P;. We see that P ()[0] turn out to be smaller
(in terms of volume) than corresponding Ppb [0]. It cannot be said that some subfamily ‘if“(l) is
the best.

We consider 4 initial points 2% x%1=(-0.6,2.05)7, 2%2=(0.35,0.5)", 2%3=(-0.4,1.4)",
1%4=(—0.5,1.5)T and construct corresponding trajectories z>([], i=1,...,4, [=1,...,4, under
controls u of the form (3.3), (3.6) based on the tubes P—“[:] and controls v of the form (4.6)
based on the tubes P+ O[] from PO they are presented for [ = 1,...,4 in Fig. 1, a, Fig. 1, b,
Fig. 1, ¢, Fig. 1, d. We have that 2%3 belongs to one of P~[0]; each of 2!, 2%2, and 2°* is
outside at least one of P+#U[0] for all I=1,...,4. We see that all trajectories confirm the
mentioned theoretically proved general situation: 2*()[.] satisfy both z*>®[N] € M and (1.3);
r>O[N] ¢ M; 24O ]] and 2+O[] violate (1.3).
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Kniouesvle cnosa: CHCTEMEI C HEONPEeACICHHOCTbIO, CUHTE3 ynpaBHCHHﬁ, 3aJa4da CGHH)KCHI/DI, 3aaga4a yKJo-
HEHUA, IMOJUBAPAJIBHBIC METO/IbI, ITapallyICIIOTOIIbI, IMapaICICIIUIICABI.

VJIK 517.977
DOI: 10.35634/vm240203

Pabora mocesiieHa pa3BUTHIO MOJU3IPATIGHBIX METONOB PEICHHs ABYX 3alad YIpaBieHHUsS JUHEHHBIMHU
MHOTOIIIaTOBBIMH CHUCTEMaMH C HEONPEAEICHHOCTAMHU MpH (Pa30BbIX OTPaHWYCHUAX — 3a/1ad TEPMUHAIIb-
HOTO COMMKeHUs U ykiIoHeHus1. OHM BO3HUKAIOT B CHCTEMaXx C AByMs YIPaBICHUSMH, I LEIb OJHOTO —
MIPUBECTH TPAEKTOPHIO HA 3aJJaHHOE KOHEYHOE MHOYKECTBO B 33JJaHHBII MOMEHT BpeMeHH, He HapyImas (a-
30BBIX OTPAaHUYEHUI, LIEJIb IPYTOro — MPOTUBONONOKHA. IIpeanonaraercs, 4To0 KOHEYHOE MHOKECTBO — I1a-
paJuTesiennIie/, YIpaBiIeH!sI CTECHEHBI TIapaljIesIOTOITO3HAYHBIMI OTPaHUYEeHUSAMH, (a30Bble OTrpaHMYEHUS
3a/aHbl B Buje nonoc. [IpeacraBiensr MeTonb! penieHust 00enx 3a/1ad ¢ UCIIONb30BAHUEM MOUIPATEHBIX
(mapasenoTono- Wi mapajuieNienune0-3HaquHbIX) TpyOoK. MeToapl peleHus 3a1a4u CONMMKeHUs mpen-
JIO’KEHBI aBTOPOM paHee, HO 3/1€Ch UCCIEAYIOTCSA UX JOMOJIHUTEIbHBIE CBOMCTBA. B yacTHOCTH, /U1 Ccityyas
0e3 (a3oBBIX OrpaHMUYCHHUN HaWAEHBI TapaHTUPOBAHHBIC OLEHKH Uil TPACKTOpUH, OOEeCIeunBAOIIe ee
HaXOXXJIeHHe BHYTpHU TPyOKu. JlaHBI yIOoOHBIE HOCTAaTOYHBIE YCIIOBHS, TapaHTHPYIOIIHNE MOIyYeHNE HEeBBHI-
POKAECHHBIX CEYECHH B Mpolecce BhIYMCICHUM. s 3a7aun yKIOHEHHS CHayajia paccMaTpHBaeTCs o0Iast
CXeéMa pelleHMs], a 3aTeM IpEeaaralTcs MOJUdIpalbHble MeToAbl. IIpUBOAATCS M CpaBHHUBAIOTCS LiEJIbIE
napaMeTpUUEeCKUe CEMEWCTBa BHEIIHMX W BHYTPEHHUX MOJMAAPAIBHBIX OLEHOK TPYOOK pa3peIiMMOCTH
obenx 3amay. [lpuBeneH WILTIOCTPUPYIOMINAN TTPUMeEp.
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