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CORRECT STRUCTURES AND SIMILARITY MEASURES OF SOFT SETS ALONG

WITH HISTORIC COMMENTS OF PROF. D. A. MOLODTSOV

After the paper of Molodtsov [Molodtsov D. Soft set theory — First results, Computers and Mathematics

with Applications, 1999, vol. 37, no. 4–5, pp. 19–31.] first appeared, soft set theory grew at a breakneck

pace. Several authors have introduced various operations, relations, results, etc. as well as other aspects

in soft set theory and hybrid structures incorrectly, despite their widespread use in mathematics and allied

areas. In his paper [Molodtsov D. A. Equivalence and correct operations for soft sets, International

Robotics and Automation Journal, 2018, vol. 4, no. 1, pp. 18–21.], Molodtsov, the father of soft set

theory, pointed out several wrong results and notions. Molodtsov [Molodtsov D. A. Structure of soft sets,

Nechetkie Sistemy i Myagkie Vychisleniya, 2017, vol. 12, no. 1, pp. 5–18.] also stated that the concept

of soft set had not been fully understood and used everywhere. As a result, it is important to revisit the

quirks of those conceptions and provide a formal account of the notion of soft set equivalency. Molodtsov

already explored many correct operations on soft sets. We use some notions and results of Molodtsov

[Molodtsov D. A. Structure of soft sets, Nechetkie Sistemy i Myagkie Vychisleniya, 2017, vol. 12, no. 1,

pp. 5–18.] to create matrix representations as well as related operations of soft sets, and to quantify the

similarity between two soft sets.
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Introduction

Molodtsov [1] introduced soft set theory in 1999. Like fuzzy set theory [2], soft set theory is

also a topic of mathematics to deal with uncertainties available in nature. In some aspects, it may

look like set-valued analysis [3], but there are many differences between set-valued analysis and

soft set theory. It is important to note that soft set theory has contributed to create a new area

of analysis named soft rational analysis [4]. But, the idea [5] of soft set theory was developed

in 1980. Later, various authors, e. g., [6–14], changed several outcomes that contradicted the

accuracy of the ideas and operations established in [1, 5, 15, 16] and others. In [15], Molodtsov

mentioned the following: “. . . many authors have introduced new operations and relations for

soft sets and used these structures in various areas of mathematics and in applied science. Unfor-

tunately in some works the introduction of operations and relationships for soft sets were carried

out without due regard to the specific of soft set definition”. In [16], the notion of correctness

of soft operations is explicitly stated. Almost all the authors of the previously stated papers have

used the incorrect notion of soft subset of a soft set [15]. Molodtsov also stated in [15] that the

authors of [7] established definitions of complement, union, and intersection of soft sets incor-

rectly. Moreover, many researchers have used these incorrect notions in their works. Çağman

and Enginoğlu [10] also defined a new notion of soft set and presented the matrix form of it,

which takes into account a subset of the collection of parameters. But, the idea of this incorrect

definition is due to Maji et al. [7]. This representation is erroneous because if we are given only

matrix representation of a soft set, then we cannot determine the soft set along with original set

of attributes. Moreover, this notion has difference with the original notion of soft sets defined

https://doi.org/10.35634/vm230103
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by Molodtsov [1]. In this regard, we want to attract attention of the community of soft set re-

searchers to a comment on ResearchGate [17]. On 15/11/2018, Molodtsov commented on a paper

of Al-Qudah and Hassan [18], which is available in ResearchGate till writing of this paper. He

commented as follows [17]: “Dear Colleagues, I did not write such a definition of a soft set.

You have added one extra condition that the set of parameters is a subset of a fixed set.” We

provide screenshot (Fig. 1) of this very important comment in the history of soft set theory for

our readers. It was taken by the second author of this paper through his ResearchGate account.
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In [9], the authors considered sets of attributes of the two soft sets for measuring similarity

between them. But, it is not necessary that sets of attributes should always contain some common

elements. In [13], Kamaci defined a formula for measuring similarity, which results, if there

is no common attribute between the two soft sets then the similarity between them is always 0.

During early research career in soft set theory and hybrid structures [19,20], the first author of this

paper also followed incorrect notions of soft set and associated structures, which were developed

by others, not Molodtsov. But, it is not a matter of shame for the first author as he learnt

correct concepts of soft set theory and related structures while working with Molodtsov in [4].

Since then, he has been trying to follow correct notions in soft set theory as set by Molodtsov.

In [16], Molodtsov mentioned the following: “The principle of constructing correct operations

for soft sets is very simple. Operations should be defined through families of sets τ(S,A)”.

Hence, the results of soft sets must be dependent on the sets τ(F,A) and τ(G,B) of two soft

sets (F,A) and (G,B) respectively, but not on their sets of attributes A and B respectively.

In this paper, we try to propose various correct operations of soft sets accurately in matrix

forms, as well as we find a similarity measure between two soft sets that is independent of

their sets of parameters. We also consider the condition where sets of attributes may have

different cardinalities and no shared parameters, which follows philosophy of Molodtsov behind

introducing soft set theory [1, 5, 15, 16].

§ 1. Preliminaries

In this section, we discuss some preliminary notions of soft set theory and related results.

Let A be a set of parameters and X be a universal set, over which a soft set is defined. The

formal definition of a soft set is given bellow.

Definition 1 (see [1]). A pair (S,A) will be called a soft set over X , if S is a mapping from the

set A to the set of subsets of the set X , i. e., S : A → 2X . In fact, a soft set is a parametrized

family of subsets. If the soft set (S,A) is given, then the family τ(S,A) can be defined as

τ(S,A) = {S(a), a ∈ A} [16].

Definition 2 (see [16]). Two soft sets (S,A) and (S ′, A′) given over the universal set X will be

called equal and we write (S,A) = (S ′, A′) if and only if S = S ′ and A = A′.

Definition 3 (see [16]). Two soft sets (S,A) and (S ′, A′) given over the universal set X will be

called equivalent and written as (S,A) ∼= (S ′, A′) if and only if τ(S,A) = τ(S ′, A′).

It is easy to note that equivalence of soft set is an equivalence relation.

Definition 4 (see [16]). A soft set (S,A) internally approximates a soft set (F,D) denoted by

(S,A) ⊆ (F,D) if for any d ∈ D such that F (d) 6= φ, there exists a ∈ A for which φ 6= S(a) ⊆
⊆ F (d).

Definition 5 (see [16]). A soft set (S,A) externally approximates a soft set (F,D) denoted by

(S,A) ⊇ (F,D) if for any d ∈ D such that F (d) 6= X , there exists a ∈ A for which X 6= S(a) ⊇
⊇ F (d).

Definition 6 (see [16]). If (S,A) ⊆ (F,D) but the relation (F,D) ⊆ (S,A) has no place, then

we say that the soft set (S,A) internally strictly approximate the soft set (F,D), denoted by

(S,A) ⊂ (F,D).

Definition 7 (see [16]). If (S,A) ⊇ (F,D) but the relation (F,D) ⊇ (S,A) has no place, then

we say that the soft set (S,A) externally strictly approximate the soft set (F,D), denoted by

(S,A) ⊃ (F,D).
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Definition 8 (see [16]). The soft set (S,A) is internally equivalent to the soft set (F,D), denoted

by (S,A)
⊂

≈ (F,D) if (S,A) ⊆ (F,D) and (F,D) ⊆ (S,A).

Definition 9 (see [16]). The soft set (S,A) is externally equivalent to the soft set (F,D), denoted

by (S,A)
⊃

≈ (F,D) if (S,A) ⊇ (F,D) and (F,D) ⊇ (S,A).

Definition 10 (see [16]). The soft set (S,A) is weakly equivalent to the soft set (F,D), denoted

by (S,A) ≈ (F,D) if (S,A)
⊂

≈ (F,D) and (S,A)
⊃

≈ (F,D).

Definition 11 (see [16]). The minimal and maximal on inclusion of sets of the family τ(S,A) is

defined as follows:

MIN(τ(S,A)) = {B ∈ τ(S,A) | B 6= φ, ∄B′ ∈ τ(S,A) : B′ ⊂ B 6= B′ 6= φ},

MAX(τ(S,A)) = {B ∈ τ(S,A) | B 6= X, ∄B′ ∈ τ(S,A) : B′ ⊃ B 6= B′ 6= X}

Definition 12 (see [16]). A relation Ω is called correct if for any quadruple of pairwise equivalent

soft sets (S,A) ∼= (S ′, A′), (F,D) ∼= (F ′, D′), given over the universal set X , the following

equality is satisfied:

Ω((S,A), (F,D)) = Ω((S ′, A′), (F ′, D′)).

Definition 13 (see [16]). The unary operation complement of (S,A), C(S,A) = (W,A) is defined

as follows: the set of parameters remains the same and the mapping is given by W (a) = X\S(a),
for any a ∈ A.

Definition 14 (see [16]). The binary operation union (S,A) ∪ (F,D) = (H,A × D) for a pair

of soft sets (S,A) and (F,D) given over a universal set X is defined as follows: the parameter

set is chosen equal to the direct product of the parameter sets, i. e., equal to A × D, and the

corresponding mappings are given by the formula H(a, d) = S(a) ∪ F (d), (a, d) ∈ A×D.

Definition 15 (see [16]). The binary operation intersection (S,A) ∩ (F,D) = (W,A × D) for

a pair of soft sets (S,A) and (F,D) given over a universal set X is defined as follows: the

parameter set is chosen equal to the direct product of the parameter sets, i. e., equal to A×D, and

the corresponding mappings are given by the formula W (a, d) = S(a) ∩ F (d), (a, d) ∈ A×D.

Definition 16. The binary operation product (S,A) × (F,D) = (X,A × D) for a pair of soft

sets (S,A) and (F,D) given over a universal set X is defined as follows: the parameter set is

chosen equal to the direct product of the parameter sets, i. e., equal to A×D and the corresponding

mappings are given by the formula X(a, d) = S(a)× F (d), (a, d) ∈ A×D.

Now, we consider an illustrative example to discuss the above operations.

Example 1. Let us consider two soft sets (F,A) and (G,B) over a universal set X , where A
and B be two sets of attributes. We consider X = {a, b, c}, A = {x, y, z}, and B = {m,n, o}.

We define the soft set (F,A) as follows:

F (x) = {b, c}, F (y) = {c}, and F (z) = {a}.

Hence, τ(F,A) = {{b, c}, {c}, {a}}.

Similarly, we define the soft set (G,B) as follows:

G(m) = {a}, G(n) = {c}, and G(o) = {c}.

Hence, τ(G,B) = {{a}, {c}}.
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Now, we consider the unary operation complement C of the soft set (F,A) which is given by

C(F,A) = (CF,A), where CF (a) = X \S(a), ∀a ∈ A. So, CF (x) = {a}, CF (y) = {a, b}, and

CF (z) = {b, c}. Therefore, τ(CF,A) = {{a}, {a, b}, {b, c}}.

Again, we consider the binary operation union
⋃

between the soft sets (F,A) and (G,B)
denoted by (F,A)

⋃

(G,B) = (H,A × B), where A × B is the Cartesian product of A
and B, and the mapping is given by H(a, b) = F (a) ∪ G(b), where (a, b) ∈ A × B. Thus,

A × B = {{x,m}, {x, n}, {x, o}, {y,m}, {y, n}, {y, o}, {z,m}, {z, n}, {z, o}}. So, we obtain

H(x,m) = {a, b, c}, H(x, n) = {b, c}, H(x, o) = {b, c}, H(y,m) = {a, c}, H(y, n) = {c},

H(y, o) = {c}, H(z,m) = {a}, H(z, n) = {a, c}, and H(z, o) = {a, c}. Hence, τ(H,A× B) =
= {{a, b, c}, {b, c}, {a, c}, {c}, {a}}.

Now, we also consider the binary operation intersection
⋂

between (F,A) and (G,B) de-

noted by (F,A)
⋂

(G,B) = (W,A × B), and the mapping is given by W (a, b) = F (a) ∩ G(b),
where (a, b) ∈ A×B. Thus, we get W (x,m) = φ, W (x, n) = {c}, W (x, o) = {c}, W (y,m) = φ,

W (y, n) = {c}, W (y, o) = {c}, W (z,m) = {a}, W (z, n) = φ, and W (z, o) = φ. Therefore,

τ(W,A×B) = {{a}, {c}, φ}.

Also, we consider the binary operation product × between (F,A) and (G,B), denoted by

(F,A) × (G,B) = (K,A × B), and the mapping is given by K(a, b) = F (a) × G(b), where

(a, b) ∈ A × B. Thus, K(x,m) = {b, c} × {a} = {(b, a), (c, a)}, K(x, n) = {b, c} × {c} =
= {(b, c), (c, c)}, K(x, o) = {b, c} × {c} = {(b, c), (c, c)}, K(y,m) = {c} × {a} = {(c, a)},

K(y, n) = {c} × {c} = {(c, c)}, K(y, o) = {c} × {c} = {(c, c)}, K(z,m) = {a} × {a} =
= {(a, a)}, K(z, n) = {a} × {c} = {(a, c)}, and K(z, o) = {a} × {c} = {(a, c)}. Hence,

τ(K,A× B) = {{(b, a), (c, a)}, {(b, c), (c, c)}, {(c, a)}, {(c, c)}, {(a, a)}, {(a, c)}}.

§ 2. Matrix representations of soft sets

In this section, we discuss the matrix representation of a soft set. A soft set (F,A) defined

over a universal set X can be represented by a matrix M such that the number of rows of M is

equal to the cardinality of the universal set X , and the number of columns of M is equal to the

cardinality of the set of attribute A.

We consider the cardinality of X and the cardinality of A to be finite for the practical feasi-

bility of computation and other real life purposes. Let us consider |X| = n and |A| = m, where

X = {x1, x2, x3, . . . , xn} and A = {a1, a2, a3, . . . , am}. Then, the binary representation table

of (F,A) is given below.

F (a1) F (a2) F (a3) . . . F (am)
x1 m11 m12 m13 . . . m1m

x2 m21 m22 m23 . . . m2m

x3 m31 m32 m33 . . . m3m
...

...
...

...
. . .

...

xn mn1 mn2 mn3 . . . mnm

Table 1. Binary representation table of (F,A)

Here, mij =

{

1, if xi ∈ F (aj),

0, if xi /∈ F (aj),
i = 1, 2, 3, . . . , n, and j = 1, 2, 3, . . . , m. Thus, we get the

following matrix M as a matrix representation of (F,A) from Table 1.
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M =















m11 m12 m13 . . . m1m

m21 m22 m23 . . . m2m

m31 m32 m33 . . . m3m
...

...
...

. . .
...

mn1 mn2 mn3 . . . mnm















So, every soft set can be transformed to its matrix form and if the matrix or binary representa-

tion table of a soft set is given, then we can easily determine the soft set. Here, we should concern

about the order of the elements of X in case of matrix representation, because two different or-

derings of the elements of the set X may lead to two different representations of the same soft

set. Thus, different representations of the same soft set may cause difficulties to define various

operations related to the matrix representation. Hence, the order of every xi must be mentioned in

case of matrix representation, where xi ∈ X . Let us consider the following example to illustrate

the matrix representation of soft set (F,A).

Example 2. Let (F,A) be a soft set over a universal set X , where X = {a, b, c}, A = {x, y, z},

F (x) = {b, c}, F (y) = {c}, and F (z) = {a}. Then, the binary representation table of (F,A) is

given below:

F (x) F (y) F (z)
a 0 0 1
b 1 0 0
c 1 1 0

.

Hence, we obtain the following matrix M for the soft set (F,A):

M =





0 0 1
1 0 0
1 1 0



.

§ 3. Operations on soft sets and matrix representations

In this section, we formulate four operations viz. complement, union, intersection and product

of soft sets in matrix forms.

3.1 Soft complement

Let M = (xij)m×n be the matrix representation of the soft set (F,A) defined over a universal set

X and order of M is m × n. Then, M ′ = (x′

ij)m×n is the matrix representation of C(F,A), the

complement of the soft set (F,A) and it is defined as below:

x′

ij =

{

1, if xij = 0,

0, if xij = 1.

Here, i = 1, 2, . . . , m, and j = 1, 2, . . . , n. It is easy to see that the matrix M ′ is of the same

order as the matrix M .

3.2 Soft union

Let K = (xij)m×n and L = (yij)m×p be matrix representations of two soft sets (F,A) and (G,B)
respectively, defined over a universal set X . Since both soft sets are defined over X , hence K
and L may have orders m × n and m × p respectively, where m, n and p are positive integers

and |n− p| ≥ 0. Now, we represent union of (F,A) and (G,B) by matrix representation and we
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consider M to be the matrix representation of (F,A)
⋃

(G,B) = (H,A × B). Then, the matrix

M is of order m× (np). Let us define the matrix M = (mij)m×(np) as follows:

mij =































max{xi1, yij}, where i = 1, 2, . . . , m, and j = 1, 2, . . . , p;

max{xi2, yi(j−p)}, where i = 1, 2, . . . , m, and j = p+ 1, p+ 2, . . . , 2p;

max{xi3, yi(j−2p)}, where i = 1, 2, . . . , m, and j = 2p+ 1, 2p+ 2, . . . , 3p;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

max{xin, yi(j−(n−1)p)}, where i = 1, 2, . . . , m, and j = (n− 1)p+ 1, . . . , np.

The matrix M follows the definition of union of two soft sets (F,A) and (G,B) given in [16].

3.3 Soft intersection

Let K = (xij)m×n and L = (yij)m×p be matrix representations of two soft sets (F,A) and (G,B)
respectively, defined over a universal set X . Since both soft sets are defined over X , hence K
and L may have orders m × n and m × p respectively, where m, n and p are positive integers

and |n − p| ≥ 0. Now, we represent intersection of (F,A) and (G,B) by matrix representation

and we consider N to be the matrix of (F,A)
⋂

(G,B) = (H,A× B). Then, the matrix N is of

order m× (np). Let us define the matrix N = (nij)m×(np) as follows:

nij =































min{xi1, yij}, where i = 1, 2, . . . , m, and j = 1, 2, . . . , p;

min{xi2, yi(j−p)}, where i = 1, 2, . . . , m, and j = p+ 1, p+ 2, . . . , 2p;

min{xi3, yi(j−2p)}, where i = 1, 2, . . . , m, and j = 2p+ 1, 2p+ 2, . . . , 3p;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

min{xin, yi(j−(n−1)p)}, where i = 1, 2, . . . , m, and j = (n− 1)p+ 1, . . . , np.

The matrix N also follows the definition of intersection of two soft sets (F,A) and (G,B) given

in [16].

3.4 Soft product

Let (F,A) and (G,B) be two soft sets defined over a universal set X , where X = {x1, x2, . . . , xm},

A = {e1, e2, . . . , en}, and B = {g1, g2, . . . , gp}. Then, we define the mapping prod: (X ×X)×
(A× B) → {0, 1} such that

prod
(

(xk, xj), (ei, gj)
)

=

{

1, if xk ∈ F (ei) and xj ∈ G(gj),

0, otherwise.

Here, k = 1, 2, . . . , m, i = 1, 2, . . . , n, and j = 1, 2, . . . , p. Then, the matrix representation

of (F,A)× (G,B) is given by P = (pkj)m2×(np) such that,

pkj =

{

1, if prod
(

(xk, xj), (ei, gj)
)

= 1,

0, if prod
(

(xk, xj), (ei, gj)
)

= 0.

Now, we consider some examples to illustrate the matrix representations with the operators

complement, union, intersection and product of soft sets.

Example 3. From Example 2, the matrix M ′ of C(F,A) can be found as shown below:

M ′ =





1 1 0
0 1 1
0 0 1



.
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Example 4. Let us consider union of two soft sets (F,A) and (G,B) defined over a universal

set X . Let X = {a, b, c}, A = {x, y, z}, and B = {m,n, o, p}. We define the soft set (F,A) as

follows: F (x) = {b, c}, F (y) = {c}, and F (z) = {a}. Similarly, we define the soft set (G,B)
as follows: G(m) = {a}, G(n) = {c}, G(o) = {c}, and G(p) = {a, c}. Then, the set of parame-

ters for (F,A)
⋃

(G,B) is A× B = {{x,m}, {x, n}, {x, o}, {x, p}, {y,m}, {y, n}, {y, o}, {y, p},
{z,m}, {z, n}, {z, o}, {z, p}}. Moreover, we have two matrices M = (xij)3×3 and N = (yij)3×4

for (F,A) and (G,B) respectively as shown below:

M =





0 0 1
1 0 0
1 1 0



 and N =





1 0 0 1
0 0 0 0
0 1 1 1



.

Now, the matrix representation of (F,A)
⋃

(G,B) is obtained as a matrix U = (mij)3×12,

which is shown below. We can easily calculate mij for i = 1, 2, 3, and j = 1, 2, 3, 4. Thus, we

obtain the matrix U as shown below:

U =





1 0 0 1 1 0 0 1 1 1 1 1
1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 1 1 1



.

The matrix U is identical to the matrix obtained by calculating the union of two soft sets (F,A)
and (G,B) as defined in Definition 14 and then constructing the matrix from the obtained soft

set. Similarly, the intersection between (F,A) and (G,B) can also be calculated using 3.3.

Example 5. Let (F,A) and (G,B) be two soft sets defined over a universal set X , where

X = {a, b, c}, A = {m,n}, and B = {x, y}. Let the binary representation tables of (F,A)
and (G,B) be M and N respectively:

M =

F (m) F (n)
a 1 0

b 1 1

c 0 0

and N =

G(x) G(y)
a 0 0

b 1 0

c 1 1

.

Then, the binary representation table of (F,A)× (G,B) = (H,A× B) is given below:

H(m, x) H(m, y) H(n, x) H(n, y)
(a, a) 0 0 0 0

(a, b) 1 0 0 0

(a, c) 1 1 0 0

(b, a) 0 0 0 0

(b, b) 1 0 1 0

(b, c) 1 1 1 1

(c, a) 0 0 0 0

(c, b) 0 0 0 0

(c, c) 0 0 0 0

.

Hence, the matrix P of (F,A)× (G,B) is given by P =





























0 0 0 0
1 0 0 0
1 1 0 0
0 0 0 0
1 0 1 0
1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0





























.
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Now, we want to mention an important idea related to soft set theory. Molodtsov in [15]

wrote: “Of course, when you specify a soft set, you have some semantic interpretation of this

soft set. However, the mathematical formalism of soft sets does not imply any semantic sense

on family of subsets or on the parameters. The parameters serve only the purpose to indicate a

specific subset . . . To determine topology we have to define only the family of vicinities of a point.

No comparison of vicinities and no other properties of these subsets are needed. The situation is

quite similar for soft sets, as the soft set is a family of vicinities of a point except that the initial

point (as in topology) may not exist. Thus, the role of parameters in definition of soft sets is

only auxiliary. Parameters are used only as names of subsets. Therefore, the introduction of the

notion of equivalence of soft sets (S,A) and (S ′, A′) should be based on equality of families of sets

τ(S,A) and τ(S ′, A′), but not on equality of point-to-set mappings S and S ′.” Similar assumption

can also be found in [5]. Hence, it may be noted that in case of union, intersection and product of

soft sets (F,A) and (G,B); the set of parameters A×B and B×A are indistinguishable. Hence,

we propose the following theorem.

Theorem 1. Let (F,A), (G,B) and (H,C) be three soft sets defined over a universal set X , then

the following properties hold:

(i) C(C(F,A)) = (F,A);

(ii) (F,A)
⋃

(G,B) = (G,B)
⋃

(F,A);

(iii)
(

(F,A)
⋃

(G,B)
)
⋃

(H,C) = (F,A)
⋃
(

(G,B)
⋃

(H,C)
)

;

(iv) (F,A)
⋂

(G,B) = (G,B)
⋂

(F,A);

(v)
(

(F,A)
⋂

(G,B)
)
⋂

(H,C) = (F,A)
⋂
(

(G,B)
⋂

(H,C)
)

.

P r o o f. We only prove (i) and (ii).

(i) For the complement C(F,A) = (W,A) of (F,A), the set of parameters remains the same

and the mapping is given by W (a) = X \ F (a), for a ∈ A. Again, taking complement of

the set (W,A), we get C(W,A) = (U,A) and the mapping is given by U(a) = X \ W (a) =
= X \ {X \ F (a)} = F (a), for a ∈ A. Thus, C(C(F,A)) = (F,A).

(ii) Let (F,A)∪ (G,B) = (H,A×B). Then, the set of parameters for (F,A)∪ (G,B) is A×B,

and the corresponding mapping is given by H(a, b) = F (a)∪G(b), where (a, b) ∈ A×B. Again,

we consider (G,B) ∪ (F,A) = (I, B × A). In this case, the set of parameters is B × A, and the

corresponding mapping is given by I(b, a) = G(b) ∪ F (a). Since, according to Molodtsov [2],

the set of parameters is auxiliary in case of soft set, thus A×B and B ×A are indistinguishable

in the sense that (a, b) ∈ A × B and (b, a) ∈ B × A are indistinguishable. So, H(a, b) = I(b, a)
because F (a)

⋂

G(b) = G(b)
⋂

F (a). Hence, (F,A) ∪ (G,B) = (G,B) ∪ (F,A). �

§ 4. Similarity between two soft sets

In this section, we define similarity measure between two soft sets (F,A) and (G,B) defined

over a universal set X . We consider the concept of matrix representation of a soft set while

measuring the similarity between two soft sets. For real world phenomena, we consider both the

universal set and the set of parameters of a soft set to be finite.

Definition 17. Let X be a universal set, A and B be two sets of attributes such that |X| = m,

|A| = n and |B| = p. Here, |K| denotes the cardinality of a set K. Without loss of generality, we

consider n ≥ p. Also, we assume Y = (yij)m×n and Z = (zij)m×p to be matrix representations

of (F,A) and (G,B) respectively. Now, we consider the following two cases.
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Case 1: when n = p.
If n = p, then we construct a new matrix D = (dij)m×n which depends on matrices Y and Z

in the following way:

dij =

{

1, if yij = zij ,

0, if yij 6= zij .

Then, similarity measure between soft sets (F,A) and (G,B) is denoted by Sim{(F,A), (G,B)}
and defined as:

Sim
(

(F,A), (G,B)
)

=

∑

i,j{dij : dij = 1}

|X| × |A|
.

Case 2: when n > p.
Suppose n − p = t, i. e., the matrix Y = (yij)m×n has exactly t columns more than the

matrix Z = (zij)m×p. Now, we first consider the submatrix W = (wij)m×p of Y with the first

p columns and m rows of Y . Now, the matrices Z and W are of the same order. Again, let us

define a new matrix D = (dij)m×p as follows:

dij =

{

1, if zij = wij ,

0, if zij 6= wij .

Next, we consider the remaining submatrix of Y with m rows and (n− t) columns beginning

from the (t + 1)-th column up to the n-th column. We denote it by M = (mij)m×(n−t), which is

of order m× (n− t). Now, we construct a zero matrix N = (nij)m×(n−t), in which all the entries

are 0 and is of order m× (n− t). Again, we define a matrix C = (cij)m×(n−t) as follows:

cij =

{

1, if mij = nij = 0,

0, otherwise.

Then, similarity measure between the two soft sets (F,A) and (G,B) is defined as below:

Sim
(

(F,A), (G,B)
)

=

∑

i,j{dij : dij = 1}+
∑

i,j{cij : cij = 1}

|X| ×max{|A|, |B|}
.

These two similarity measures are independent of the set of attributes chosen and they only

depend on the families τ(F,A) and τ(G,B). Two soft sets are said to be completely similar

if their similarity measure is 1 or completely dissimilar if their similarity measure is 0. Thus,

we obtain similarity measures using Molodtsov’s ideas [15] as stated above. Let us consider an

illustrative example.

Example 6. Let M and N be two matrices of two soft sets (F,A) and (G,B) respectively, where

M =





1 0 1
1 0 0
1 0 1



 and N =





0 1 1 0
1 0 0 1
1 1 1 0



.

Thus, d11 = 0, d12 = 0, d13 = 1, d21 = 1, d22 = 1, d23 = 1, d31 = 1, d32 = 0, and d33 = 1.
Now, we construct the following matrix D = (dij)3×3, where i = 1, 2, 3, and j = 1, 2, 3:

D =





0 0 1
1 1 1
1 0 1



.

Next, we construct a zero matrix R = (rij)3×1, and a column matrix S = (sij)3×1, each of

order 3 × 1, where i = 1, 2, 3, and j = 1. It is easy to observe that S is the submatrix of N
consisting of 4-th column of N :
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R =





0
0
0



 and S =





0
1
0



.

Thus, c11 = 1, c21 = 0, and c31 = 1. Now, we construct the matrix C as follows:

C =





1
0
1



.

Hence,

Sim
(

(F,A), (G,B)
)

=

∑

i,j

{dij : dij = 1}+
∑

i,j

{cij : cij = 1}

|X| ×max{|A|, |B|}
=

2

3
.

Theorem 2. Let (F,A) and (G,B) be two soft sets over a universal set X . Then, the following

results hold:

(i) 0 ≤ Sim
(

(F,A), (G,B)
)

≤ 1;

(ii) Sim
(

(F,A), (G,B)
)

= Sim
(

(G,B), (F,A)
)

;

(iii) Sim
(

(F,A), (F,A)
)

= 1.

P r o o f. (i) Let |X| = m, |A| = n, and |B| = p. Without loss of generality, we consider n ≥ p.
Let Y = (yij)m×n and Z = (zij)m×p be matrix representations of (F,A) and (G,B) respectively.

We consider the following two cases.

Case 1: when n = p.
∑

i,j

{dij : dij = 1} ≤ |X| × |A|. So, we get

∑

i,j

{dij : dij = 1}

|X| × |A|
≤ 1. Hence,

we find that Sim
(

(F,A), (G,B)
)

≤ 1.

Again,
∑

i,j

{dij : dij = 1} ≥ 0. It implies

∑

i,j

{dij : dij = 1}

|X| × |A|
≥ 0. Hence, we get

Sim
(

(F,A), (G,B)
)

≥ 0.

Case 2: when n > p.
∑

i,j

{dij : dij = 1}+
∑

i,j

{cij : cij = 1} ≤ |X| ×max{|A|, |B|}. So we have

∑

i,j

{dij : dij = 1}+
∑

i,j

{cij : cij = 1}

|X| ×max{|A|, |B|}
≤ 1. Hence we have Sim

(

(F,A), (G,B)
)

≤ 1.

Also,
∑

i,j

{dij : dij = 1}+
∑

i,j

{cij : cij = 1} ≥ 0. Thus, we get

∑

i,j

{dij : dij = 1}+
∑

i,j

{cij : cij = 1}

|X| ×max{|A|, |B|}
≥ 0.

Hence, it implies that Sim
(

(F,A), (G,B)
)

≥ 0.
Thus, combining the above results we get 0 ≤ Sim

(

(F,A), (G,B)
)

≤ 1.

(ii) Let M and N be matrix representations of (F,A) and (G,B) respectively of order m × n
and m× p, respectively.

If n = p, then the result is obvious.

If n > p and n− p = t, then we construct a zero matrix K of order m× (n− t) to obtain the

matrix C as defined in Definition 17. If n < p and p − n = t′, then similarly, we construct the
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zero matrix K ′ of order m × (p − t′) to obtain the matrix C. In both cases, we obtain the same

matrix C. Hence, it does not affect if we interchange the order of the soft sets for which we have

to calculate the similarity measure.

(iii) Directly follows from Definition 17. �

Theorem 3. If (F,A) is a soft set defined over a universal set X and (CF,A) denotes the

complement of the soft set (F,A), then Sim
(

(F,A), (CF,A)
)

= 0.

P r o o f. The proof is obvious. �

Theorem 4. Let (F,A) and (G,B) be two soft sets defined over a universal set X . If the

mappings F and G are one–one and (F,A) ∼= (G,B), then Sim
(

(F,A), (G,B)
)

= 1, provided

the ordering of attributes is independent of choice.

P r o o f. For two soft sets (F,A) and (G,B) defined over a universal set X , (F,A) ∼= (G,B)
implies τ(F,A) = τ(G,B). Since τ(F,A) = τ(G,B), then the mappings F and G are one-one

implying that |A| = |B|. It implies that the matrices of both soft sets will be of the same order.

Now, an element of τ(F,A) represents one column in the respective matrix of (F,A) and similarly

we obtain a matrix for (G,B). It is also given that the ordering of attributes is independent of

choice. Hence, τ(F,A) = τ(G,B) implies matrix representations of soft sets are identical. Thus,

Sim
(

(F,A), (G,B)
)

= 1. �

Now, we consider a case where τ(F,A) ∩ τ(G,B) = φ, for two soft sets (F,A) and (G,B).
For the practical feasibility, let us discuss a situation by a real life example. Granular computing

is an emerging computing paradigm of information processing that concerns the processing of

complex information entities called “information granules”, which arise in the process of data

abstraction and derivation of knowledge from information or data [22]. In this process, there

are granules and several granular layers in a granular structure. A granule may be a subset,

class, object or cluster of a universe [21]. In granular computing [22, 23], we may construct a

granular layer by using a soft set, say (F,A) and granules of the layer may be represented by

the elements of τ(F,A) of the soft set (F,A). Then, we can have similarity measures between

the different layers formed by different soft sets. It is often feasible to find that the information

in a specific layer of a granular structure does not match to information in an another layer

of a different granular structure. In spite of it, we cannot conclude that there is no similarity

between the two layers of different granules. For example, we consider two granular layers

as shown in Figure 2, represented by two soft sets (F,A) and (G,B) defined over the same

universe X = {a, b, c}. The elements of τ(F,A) and τ(G,B) represent granules in two granular

layers. Suppose τ(F,A) = {{a, b}, {c}} and τ(G,B) = {{a, c}, {b}, {d, e}} are representing a

set of two granules and a set of three granules in granular structure 1 and granular structure 2

respectively as shown in the Figure 2. Here, τ(F,A)∩ τ(G,B) = φ, but we cannot say that there

is no similarity between the granular layers because the elements a, b and c are in some granules

in both layers. From this discussion, we conclude the following theorem which may be useful for

granular computing.

Theorem 5. If (F,A) and (G,B) are two soft sets defined over a universal set X , then τ(F,A)∩
∩ τ(G,B) = φ does not imply that Sim

(

(F,A), (G,B)
)

= 0 in general.

Let us consider an example to illustrate the above theorem.

Example 7. Let (F,A) and (G,B) be two soft sets representing two granular layers in two differ-

ent granular structures defined over a universal set X . Let X = {a, b, c, d, e}, A = {m,n}, and

B = {x, y}. The mappings F and G are given by F (m) = {a, b}, F (n) = {e}, G(x) = {b, c},
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τ(F,A)

τ(G,B)

c a, b

a, e d, e b

Granular strurture 1 Granular strurture 2

Fig. 2. Representations of two granular structures

and G(y) = {c, d, e}. Hence, τ(F,A) = {{a, b}, {e}} and τ(G,B) = {{b, c}, {c, d, e}}. In these

two families, each element will represent a granule in the granular layer of the respective granular

system. We find that τ(F,A)∩τ(G,B) = φ. It is now easy to find that Sim
(

(F,A), (G,B)
)

=
3

5
.

Now, let us consider some properties of soft sets with respect to internal and external approx-

imations of soft sets [16].

Definition 18. Let M be a matrix of a soft set (F,A) defined over a universal set X . We consider

A = {e1, e2, . . . , en}, i. e., |A| = n. Then, gravity of an attribute ei ∈ A is denoted by χ(ei) and

it is defined to be the total number of 1’s in the ordered i-th column of the matrix M of (F,A),
where i = 1, 2, . . . , n.

Theorem 6. Consider two soft sets (F,A) and (G,B) defined over a universal set X such that

(F,A) ⊆ (G,B). Let |A| = m and |B| = n. Then, χ(ei) ≤ χ(gj) in some order, where

i = 1, 2, . . . , m, and j = 1, 2, . . . , n.

Corollary 1. If (F,A) ⊆ (G,B) and |A| = |B| = n, then χ(ei) ≤ χ(gi), where i = 1, 2, . . . , n, if

the ordering of attributes is independent of choice.

Let us consider an illustrative example.

Example 8. Let (F,A) and (G,B) be two soft sets defined over a universal set X , where

X = {a, b, c}, A = {e1, e2, e3}, and B = {g1, g2, g3, g4}. If M and N are the matrices of (F,A)
and (G,B) respectively, where

M =





1 1 1
1 1 0
0 1 0



 and N =





1 1 1 1
1 0 0 1
0 0 1 1



,

then obviously, (F,A) ⊆ (G,B). Hence, χ(e1) = χ(g1), χ(e2) = χ(g4), and χ(e3) ≤ χ(g3).

Corollary 2. Let (F,A) and (G,B) be two soft sets defined over a universal set X and (F,A) ⊆
⊆ (G,B). Let A = {e1, e2, . . . , em} and B = {g1, g2, . . . , gn}. Then, it is not always true that
m
∑

i=1

χ(ei) ≤

n
∑

j=1

χ(gj).

The following example is used to support the preceding corollary.
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Example 9. Let (F,A) and (G,B) be two soft sets defined over a universal set X , where

X = {a, b, c}, A = {e1, e2, e3}, and B = {g1, g2, g3, g4}. If M and N are the matrices of (F,A)
and (G,B) respectively, where

M =





1 1 1
0 0 0
1 1 1



 and N =





1 1 1 1
0 0 0 0
0 1 0 0



,

then obviously, (F,A) ⊆ (G,B). But,

3
∑

i=1

χ(ei) = 6 �
5

∑

j=1

χ(gj) = 5.

Theorem 7. Let (F,A) and (G,B) be two soft sets defined over a universal set X such that

(F,A) ⊇ (G,B), |A| = m, and |B| = n. Then, χ(ei) ≥ χ(gj) in some orders, where

i = 1, 2, . . . , m, and j = 1, 2, . . . , n.

Corollary 3. If (F,A) ⊇ (G,B) and |A| = |B| = n, then χ(ei) ≥ χ(gi), where i = 1, 2, . . . , n, if

the ordering of attributes is independent of choice.

Corollary 4. Let (F,A) and (G,B) be two soft sets defined over a universal set X such that

(F,A) ⊇ (G,B), A = {e1, e2, . . . , em}, and B = {g1, g2, . . . , gn}. Then, it is not always true

that

m
∑

i=1

χ(ei) ≥
n

∑

j=1

χ(gj).

Theorem 8. Let (F,A) and (G,A) be two soft sets defined over a universal set X . If (F,A)
⊂

≈
⊂

≈ (G,A), then Sim
(

(F,A), (G,A)
)

= 1, for some specific orderings of attributes in the matrix

representations of two soft sets (F,A) and (G,A).

P r o o f. Since (F,A) and (G,A) have the same set of attributes, hence their matrix represen-

tations are identical. Also, the condition (F,A)
⊂

≈ (G,A) implies that (F,A) ⊆ (G,A) and

(G,A) ⊆ (F,A). Now, due to Theorem 6, we get χ(e)(F,A) = χ(e)(G,A), for all e ∈ A. Here,

we indicate χ(e)(F,A) to represent gravity of e ∈ A in (F,A) and χ(e)(G,A) to indicate gravity

of e ∈ A in (G,A). Again, since X is ordered while representing the matrices and the order-

ing of attributes is independent of choice, hence the 1’s in each of the matrix will be placed

in the same ordered place, which results the same matrices for both soft sets. Thus, we get

Sim
(

(F,A), (G,A)
)

= 1. �

Theorem 9. Let (F,A) and (G,A) be two soft sets defined over a universal set X . If (F,A)
⊃

≈
⊃

≈ (G,A), then Sim
(

(F,A), (G,A)
)

= 1, for some specific orderings of attributes in the matrix

representations of two soft sets (F,A) and (G,A).

P r o o f. Similar to the above proof. �

Theorem 10. Let (F,A) and (G,A) be two soft sets defined over a universal set X . We consider

M and N to be the matrices of (F,A) and (G,A) respectively, where |A| = n. If the columns

of M and N are linearly independent and span Rn, then Sim
(

(F,A), (G,A)
)

= 1, for some

specific orderings of attributes in the matrix representations of the soft sets (F,A) and (G,A).

P r o o f. Since the columns of M and N are linearly independent and span Rn, hence the set of

columns of each matrix forms a basis for Rn. Also, since the entries of M and N are 0 and 1
only, hence they will form the identical basis, i. e., the set {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . ,
. . . , (0, 0, 0, . . . , 1)}. Again, the sets of attributes are the same for (F,A) and (G,A). Hence

the matrices will be identical to each other if we arrange the columns in a specific order. Thus,

obviously for two identical matrices, we get Sim
(

(F,A), (G,A)
)

= 1. �
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Corollary 5. For two soft sets (F,A) and (G,A) defined over a universal set X , if F and G
are one-one and every element of the families τ(F,A) and τ(G,A) belongs to MIN(τ(F,A))
and MIN(τ(G,A)) respectively, then Sim

(

(F,A), (G,A)
)

= 1, for some specific orderings of

attributes in the matrix representations of the soft sets (F,A) and (G,A).

P r o o f. If every element of the families τ(F,A) and τ(G,A) belongs to MIN(τ(F,A)) and

MIN(τ(G,A)) respectively, then in the matrix representations of (F,A) and (G,B) the set of

columns of each matrix is linearly independent, since all the elements of τ(F,A) and τ(G,B)
are minimal and hence do not contain in any other element of τ(F,A) and τ(G,B) respectively.

Again, the mappings F and G are one-one. Hence, let |τ(F,A)| = |A| = |τ(G,A)| = n. Thus,

the matrices of (F,A) and (G,B) are of the same order and the linearly independent columns

span Rn. Hence, by Theorem 10, Sim
(

(F,A), (G,A)
)

= 1. �

Let us consider an example to illustrate the above result.

Example 10. Let (F,A) and (G,A) be two soft sets defined over a universal set X , where

X = {a, b, c}, and A = {x, y, z}. Now, we define (F,A), where F (x) = {b, c}, F (y) = {c, a},

and F (z) = {a, b}. Hence, τ(F,A) = {{a, b}, {b, c}, {c, a}}. Similarly, we define (G,A), where

G(x) = {a, c}, G(y) = {a, b}, and G(z) = {b, c}. Hence, τ(G,A) = {{a, b}, {b, c}, {c, a}}.

Here, the mappings F and G are one-one and all the elements of the families τ(F,A) and τ(G,A)
belong to MIN(τ(F,A)) and MIN(τ(G,A)) respectively. The binary representation tables

of (F,A) and (G,A) are given by M ′ and N ′ respectively:

M ′ =

F (x) F (y) F (z)
a 0 1 1
b 1 0 1
c 1 1 0

and N ′ =

G(z) G(x) G(y)
a 0 1 1
b 1 0 1
c 1 1 0

.

Thus, we get the following two matrices M and N for (F,A) and (G,A) respectively:

M =





0 1 1
1 0 1
1 1 0



 and N =





0 1 1
1 0 1
1 1 0



.

Thus, Sim
(

(F,A), (G,B)
)

= 1.

Corollary 6. For two soft sets (F,A) and (G,A) defined over a universal set X , if F and G
are one-one and every element of the families τ(F,A) and τ(G,A) belongs to MAX(τ(F,A))
and MAX(τ(G,A)) respectively, then Sim

(

(F,A), (G,A)
)

= 1, for some specific orderings of

attributes in the matrix representations of the soft sets (F,A) and (G,A).

P r o o f. Similar to the above proof. �

§ 5. Decision making using soft sets during smartphone purchase

In this section, we provide a hypothetical decision making scenario of purchasing a smart

phone by a customer Mr. Bob. We consider X as the universal set consisting of eight features:

4GB, 6GB, Snapdragon, MediaTek, 64mp, 50mp, 5000mAh, 6000mAh, i. e.,

X = {4GB, 6GB, Snapdragon, MediaTek, 64mp, 50mp, 5000mAh, 6000mAh}.

Now, Mr. Bob’s requirements for a smart phone are based on four attributes: RAM, Processor,

Battery capacity, Camera. Thus, we consider the set of attributes as A, where

A = {RAM, Processor, Battery capacity, Camera}.

His requirements to select a smartphone can be expressed as a soft set (F,A), where

F (RAM) = {6GB}, F (Processor) = {MediaTek}, and F (Battery capacity) = {5000mAh}, and
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F (Camera) = {64mp}. Now, Mr. Bob searches a smartphone named “MOTOROLA G52” in the

e-commerce website Flipkart. We denote a soft set (M,A) corresponding to MOTOROLA G52,

where M(RAM) = {6GB}, M(Processor) = {Snapdragon}, M(Battery capacity) = {5000mAh},

and M(Camera) = {50mp}. Again, he searches another smartphone named “Realme GT Neo 3T”

in the official website of Realme. We denote a soft set (R,A) corresponding to Realme GT

Neo 3T, where R(RAM) = {6GB}, R(Processor) = {Snapdragon}, R(Battery capacity) =
= {5000mAh}, and R(Camera) = {64mp}. So, we represent soft sets (F,A), (M,A) and (R,A)
in Table 2, Table 3, and Table 4 respectively.

F (RAM) F (Processor) F (Battery capacity) F (Camera)
4GB 0 0 0 0

6GB 1 0 0 0

Snapdragon 0 0 0 0

MediaTek 0 1 0 0

64mp 0 0 0 1

50mp 0 0 0 0

5000mAh 0 0 1 0

6000mAh 0 0 0 0

Table 2. Binary representation table of (F,A)

M(RAM) M(Processor) M(Battery capacity) M(Camera)
4GB 0 0 0 0

6GB 1 0 0 0

Snapdragon 0 1 0 0

MediaTek 0 0 0 0

64mp 0 0 0 0

50mp 0 0 0 1

5000mAh 0 0 1 0

6000mAh 0 0 0 0

Table 3. Binary representation table of (M,A)

R(RAM) R(Processor) R(Battery capacity) R(Camera)
4GB 0 0 0 0

6GB 1 0 0 0

Snapdragon 0 1 0 0

MediaTek 0 0 0 0

64mp 0 0 0 1

50mp 0 0 0 0

5000mAh 0 0 1 0

6000mAh 0 0 0 0

Table 4. Binary representation table of (R,A)
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Now, we can find that Sim
(

(F,A), (M,A)
)

=
30

32
and Sim

(

(F,A), (R,A)
)

=
31

32
. Hence,

Mr. Bob will prefer Realme GT Neo 3T more than MOTOROLA G52.

§ 6. Discussion

The theory of soft set has been applied wrongly to many areas of mathematics and allied areas

by almost all the researchers of soft set theory except Molodtsov [15, 16]. As he stated several

times [15, 16], correctness of soft set theory is required to maintain the genuine philosophy of

soft set theory’s importance. Thus, we have tried to establish some results and notions based on

the correct structures introduced by only Molodtsov [1, 5, 15, 16]. Similarity measure discussed

here may be applied in granular computing as well as in other computing paradigm. Based on

our present study, we propose the following conjecture.

Conjecture. If a relation Ω is correct for any quadruple of pairwise equivalent soft sets (F,A) ∼=
∼= (F ′, A′) and (G,B) ∼= (G′, B′), defined over a universal set X , then it is not necessary that

Sim
(

(F,A), (G,B)
)

= Sim
(

(F ′, A′), (G′, B′)
)

.

Not only we have tried to follow correct notions and philosophy of soft set theory, but also

several pioneers of fuzzy set theory corrected several misconceptions related to fuzzy set theory.

Fuzzy pioneer George J. Klir and his co-authors [24] pointed out several misconceptions available

in literature of philosophy of concepts and fuzzy set theory. But in our case, not only a part of soft

set theory is wrong but almost all the fundamental operations of soft sets are completely wrong

along with the available notions of soft set by Maji et al. [6, 7], Çağman and Enginoğlu [10],

and others. For example, we can raise question on definition of soft topology [25–28] because

the definition of empty soft set provided by Molodtsov [16] is completely different than that of

the notion of empty soft set available in literature of soft set theory. In case of Molodtsov’s

definition of empty soft set, an empty set of parameters plays a crucial role, but this idea is absent

in the definition of empty soft set provided by Maji et al. [7], Çağman and Enginoğlu [10], and

others. Since Molodtsov, the father of soft set theory, raised his concern about incorrect notions,

operations and related results of soft set theory, hence it is now prime duty of the community

of soft set researchers to look back to the beginning of soft set theory and hybrid structures

by following the correct path of Molodtsov. Although there are thousands of published papers

available on soft set theory and related areas, but it is not our intention to encourage wrong ideas

related to soft set theory and hybrid structures. Thus in this paper, we do not focus to apply

our results in different areas but our main intention is to develop correct theories of soft sets by

following Molodtsov [1, 5, 15, 16].

§ 7. Conclusion

In this paper, we develop some results based on correct notions of soft sets introduced by

Molodtsov [1, 5, 15, 16]. Some unary and binary operations on soft sets are defined correctly

in matrix forms. Also, similarity measure between two soft sets (F,A) and (G,B) is defined

based on the families τ(F,A) and τ(G,B), but not on the set of parameters [12,13]. We hope to

continue the process of establishing various ideas related to correct notions of soft set theory by

following Molodtsov in our forthcoming papers. We also hope this paper will attract the attention

of scientific community related to soft set and hybrid structures, and it will be considered as one

of important papers in the history of soft set theory because this paper reports, for the first time,

an important comment of Molodtsov on a social platform ResearchGate regarding incorrectness

of available definition of soft set along with others.
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С. Ачарджи, А. Оза

Корректные структуры и меры сходства мягких множеств с историческими комментарии про-

фессора Д. А. Молодцова

Ключевые слова: мягкое множество, операции над мягкими множествами, матричное представление,

мера сходства.

УДК 510.67, 004.8

DOI: 10.35634/vm230103

После статьи Молодцова [Molodtsov D. Soft set theory — First results // Computers and Mathematics

with Applications. 1999. Vol. 37. No. 4–5. P. 19–31.] теория мягких множеств начала стремительно

развиваться. Несколько авторов ввели различные операции, отношения, результаты и т. д., а также

другие аспекты в теории мягких множеств и гибридных структур некорректно, несмотря на их ши-

рокое применение в математике и смежных областях. В своей работе [Molodtsov D. A. Equivalence

and correct operations for soft sets // International Robotics and Automation Journal. 2018. Vol. 4. No. 1.

P. 18–21.], Молодцов, отец теории мягких множеств, указал на несколько неверных результатов

и понятий. Молодцов [Молодцов Д. А. Структура мягких множеств // Нечеткие системы и мягкие

вычисления. 2017. Т. 12. Вып. 1. С. 5–18.] также заявил, что понятие мягкого множества не везде

было полностью понято и использовано. В связи с этим важно пересмотреть причуды этих пред-

ставлений и дать формальное изложение понятия эквивалентности мягкого множества. Молодцов

уже исследовал многие корректные операции над мягкими множествами. Мы используем некоторые

понятия и результаты Молодцова [Молодцов Д. А. Структура мягких множеств // Нечеткие системы

и мягкие вычисления. 2017. Т. 12. Вып. 1. С. 5–18.] для создания матричных представлений, а так-

же связанных с ними операций над мягкими множествами, и для количественной оценки сходства

между двумя мягкими множествами.
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