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A module M is called pseudo semi-projective if, for all o, 5 € Endr(M) with Im(«) = Im(f), there
holds a Endg(M) = SEndgr(M). In this paper, we study some properties of pseudo semi-projective
modules and their endomorphism rings. It is shown that a ring R is a semilocal ring if and only if each
semiprimitive finitely generated right R-module is pseudo semi-projective. Moreover, we show that if M is
a coretractable pseudo semi-projective module with finite hollow dimension, then End (M) is a semilocal
ring and every maximal right ideal of End (M) has the form {s € Endr(M)|Im(s) + Ker(h) # M} for
some endomorphism £ of M with h(M) hollow.
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Introduction

Following [15], a module M is called semi-projective if, for any submodule N of M, every
diagram with exact row
M

M.LN—W

can be extended by a homomorphism h: M — M with fh = g. It is equivalent to fS =
= Hom(M, f(M)) for every f € Endgr(M) = S. One can check that M is semi-projective if and
only if for all o, 5 € Endg(M) with Im(«) < Im(f), there holds a Endg(M) < SEndg(M).
The endomorphism rings of semi-projective modules are studied. It is shown that if M is a
finitely generated, semi-projective R-module satisfying DCC for M-cyclic submodules, then
Endg(M) satisfies DCC for cyclic left ideals [15, 31.10]. Recently, some authors consid-
ered some generalizations of semi-projective modules and dual automorphism-invariant modules
(see [1,2,5,7,8,10-12, 14]).

A generalization of semi-projective modules is considered, namely, pseudo semi-projective
modules. In [10], a right R-module M is called pseudo semi-projective if, for any endomor-
phism ¢ of M, every epimorphism p: M — (M) and every epimorphism f: M — e(M),
there exists an endomorphism A of M such that ph = f. A characterization of Artinian pseudo
semi-injective modules is considered. It is shown that if M is an Artinian pseudo semi-injective
module then S = Endg (M) is semiprimary (see [10, Theorem 3.10]). Moreover, the author [10]
studied semiperfect rings and perfect rings via modules having pseudo semi-projective covers.

In this paper, we continue on pseudo semi-projective modules and their endomorphism rings.
It is shown that a ring R is a semilocal ring if and only if each semiprimitive finitely gener-
ated right R-module is pseudo semi-projective (Theorem 1). Considering coretractable modules,
we show that if M is a coretractable pseudo semi-projective module with S = Endgz(M),
then S is left perfect if and only if for any infinite sequence si,ss,... € S, the chain
Im(sy) > Im(syse) > ... is stationary (Theorem 2). Moreover, if M is a coretractable pseudo
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semi-projective module with finite hollow dimension, then Endg (M) is a semilocal ring and
every maximal right ideal of Endg (M) has the form {s € Endg(M)|Im(s) 4+ Ker(h) # M} for
some endomorphism A of M with k(M) hollow (Theorem 3).

§ 1. Notations and definitions

Throughout this article all rings are associative rings with unity and all modules are right
unital modules over a ring. We denote by | X| the cardinality of a set X. For a submodule N
of M, we write N < M (N < M,N < M) iff N is a submodule of M (respectively, a proper
submodule, a small submodule). We denote by J(R) the Jacobson radical of the ring R. For any
term not defined here the reader is referred to [3] and [9].

§ 2. Some results of pseudo semi-projective modules

Following [10], a right R-module M is called pseudo semi-projective if, for any endomor-
phism € of M, every epimorphism p: M — (M) and every epimorphism f: M — (M), there
exists an endomorphism h of M such that ph = f, or equivalently if, for any endomorphism ¢
of M and every epimorphism f from M to M/ Ker(e), there exists an endomorphism h of M
such that 7h = f with 7: M — M/ Ker(e) the natural projection.

Lemma 1 (see [10, Lemma 3.1]). Let M be a right R-module and S = Endg(M). Then the

following are equivalent:
1) M is pseudo semi-projective;
2) forall a, f € S with Im(«) = Im(5), S = B5S.

Lemma 2. Let N be a submodule of a pseudo semi-projective right R-module M. Then, N is a
direct summand of M if and only if M /N is isomorphic to a direct summand of M.

P ro o f. Assume that N is a direct summand of M. One can check that M /N is isomorphic
to a direct summand of M. Now, assume that M/ /N is isomorphic to a direct summand of M.
Let ¢»: M/N — K be an isomorphism with M = K @& K'. Let 7: M — K be the canonical
projection, ¢: K — M be the inclusion map and p: M — M /N be the natural projection. We
consider the following diagram

M= M/N —— K —0

0

Note that K is an epimorphic image of M. Since M is pseudo semi-projective, Ypg = 7 for
some endomorphism g of M or pg = ¢~'m. Then, we have pgu) = 1,;/y. It shows that p is a
splitting epimorphism, and so N is a direct summand of M. U

Corollary 1. If M = A® B is a pseudo semi-projective module, then every epimorphism A — B
splits.

Proof Assume that M = A ® B is a pseudo semi-projective right R-module. Call
f: A — B an epimorphism. Then, A/ Ker(f) is isomorphic to B being a direct summand of M.
From Lemma 2, it immediately infers that Ker(f) is a direct summand of M, and so it is a direct
summand of A. We deduce that f splits. O
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Proposition 1. The following conditions are equivalent for a ring R:
1) R is semisimple Artinian,
2) each finitely generated right R-module is pseudo semi-projective;
3) each 2-generated right R-module is pseudo semi-projective.

Proof (1)= (2) = (3) are obvious.

(3)= (1) In order to prove the semisimplicity of R, we show that every simple right R-mod-
ule is projective. Indeed, let M be a simple right R-module. Take N = R @ M. Then, N is a
2-generated right R-module, and so it is pseudo semi-projective. Note that M is an epimorphic
image of R. Then, it follows, from Corollary 1, that M is isomorphic to a direct summand of Rp,
and so it is projective. We deduce that R is semisimple Artinian. 0J

Recall that a module P is a pseudo semi-projective cover (resp., projective cover) of a right
R-module M if, there exists an epimorphism p: P — M such that P is pseudo semi-projective
(resp., projective) and Ker(p) is small in P [10].

Proposition 2. Let f: P — M be an epimorphism from a right R-module M to a projective right
R-module P. Then

1) P @ M is pseudo semi-projective if and only if M is projective;

2) P ® M has a pseudo semi-projective cover if and only if M has a projective cover.

Proof (1) is obvious by Corollary 1.

(2) If M has a projective cover, then P & M has a pseudo semi-projective cover. Assume that
P @& M has a pseudo semi-projective cover. We show that M is projective. Take q: Q — P& M
an epimorphism with small kernel and () pseudo semi-projective. Call 7: P & M — P the
canonical projection. Then, 7o ¢: () — P is an epimorphism. We have that P is projective and
obtain that 7 o ¢ is a splitting epimorphism. Therefore, there exists a monomorphism 3: P —
such that Togo 3 = 1p, and so @ = Im(S3) @ Ker(mwoq). Let P’ = Ker(roq) and q; = ¢|p:. Then,
we have ¢ (P’) = q(P') = Ker(r) = M which implies that ¢;: P’ — M is an epimorphism.
One can check that Ker(q;) = Ker(g), and so Ker(q;) is small in P’. Next, we show that P’ is
projective. We consider the following diagram

P
. !

>
q1

P’ M 0

0

We have that P is projective and obtain that there is a homomorphism g: P — P’ such that
the above diagram is commutative, and so ¢; o g = f. Since Ker(q;) is small in P, g is an
epimorphism. On the other hand, @) = Im(5) @ P’ =2 P ® P’ is pseudo semi-projective. By
Corollary 1, g splits and so P’ is isomorphic to a direct summand of P. Thus, P’ is projective. [J

Recall that a module M is called semiprimitive if it’s Jacobson radical is zero ( [6]).
Next, we give the structure of rings via semiprimitive finitely generated modules accompany-
ing with the pseudo semi-projectivity of modules.

Lemma 3. If each semiprimitive finitely generated right R-module is pseudo semi-projective, then
every quotient ring of R has this property.
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Proof LetS bea quotient ring of R. Assume that M is a semiprimitive finitely generated
right S-module. Then M is also a semiprimitive finitely generated right R-module. By the
hypothesis, M is a pseudo semi-projective right R-module. It follows that M is a pseudo semi-
projective right S-module. l

Lemma 4 (see [3, Proposition 10.15]). The following conditions are equivalent for a right R-mod-
ule M:

1) M is semiprimitive Artinian;

2) M is semiprimitive finitely cogenerated,

3) M is a semisimple finitely generated module.

Corollary 2. A semiprimitive Artinian module is pseudo semi-projective.
The following result for semilocal rings via the pseudo semi-projectivity of modules is true.

Theorem 1. The following conditions are equivalent for a ring R:
1) R is a semilocal ring (i.e., R/ J(R) is semisimple Artinian);
2) each semiprimitive finitely generated right R-module is pseudo semi-projective.

Proof. (1) = (2). Assume that R is semilocal. From Corollary 2, we show that every
semiprimitive finitely generated right R-module is Artinian. In order to complete the proof we
will continue by induction on generated elements of M. Assume that M is generated by n
elements. The case n = 1, we have M is a cyclic module. This means that M = R/K for
some right ideal K of R. By assumption, we have J(R/K) = 0 or J(R) is contained in K,
and so R/K = (R/J(R))/(K/J(R)). We have that R/J(R) is a semilocal ring and obtain that
R/J(R) is semisimple Artinian, and so R/K is semisimple. It follows that R/K is Artinian.
Suppose now that each semiprimitive right R-module generated by n = k elements is Artinian.
Call M = myR+ moR + --- + my41 R a semiprimitive finitely generated right R-module. We
show that M is Artinian. Indeed, we have the following short exact sequence:

0—mR—M— M/mR — 0.

The induction hypothesis can be applied to the modules m R and M/mR. It follows that
m1R and M/m,R are Artinian modules, which implies that M is Artinian. Thus, it is shown
that every semiprimitive finitely generated right R-module is Artinian. We deduce that every
semiprimitive finitely generated right R-module is pseudo semi-projective.

(2) = (1) Let R = R/J(R). We show that every simple right 2-module is projective. Indeed,
let S be an arbitrary simple right R-module. Take M = Rz @ S. Then, M is a semiprimitive
finitely generated R-module. By (2) and Lemma 3, we have that M is pseudo semi-projective.
Note that S is an epimorphic image of Rp. It follows, from Corollary 1, that S is isomorphic to
a direct summand of R, and so S is projective. We deduce that R is a semilocal ring. U

Corollary 3. The following conditions are equivalent for a ring R:
1) R is a semilocal ring;
2) each semiprimitive 2-generated right R-module is pseudo semi-projective.

Let N and L be submodules of a right R-module M. N is called a supplement of L, if
N+ L = Mad NN L < N. Recall that a submodule U of the R-module M has ample
supplement in M if, for every V' < M with U + V = M, there is a supplement V[, of U with
Vo < V. M is called supplemented (resp., amply supplemented) if each of its submodules has a
supplement (resp., ample supplement) in M (see [15]).

From Corollary 1, we have the following results.
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Proposition 3. For a ring R, the following statements are equivalent:

1) R is right perfect,
2) every pseudo semi-projective right R-module is amply supplemented;
3) every pseudo semi-projective right R-module is supplemented.

Let M be a right R-module with S = Endz(M). We denote by
V(S) = {f € S|Im(f) < M}

the set of all endomorphisms of M with small image. One can check that V(.9) is the ideal of S.
Recall that an element a € R is said to be regular (in the sense of von Neumann) if there
exists z € R such that axa = a. A ring R is called regular if every element of R is regular.
A right R-module M is said to be coretractable if Hompg(K, M) # 0 for every nonzero
factor K of M.

Lemma 5 (McCoy’s Lemma). Let R be a ring and a,c € R. If b = a — aca is a regular element
of R, then so is a.

P r o o f. This is by definition. 0

Lemma 6. Let M be a coretractable pseudo semi-projective module with S = Endg(M). If
a & V(S), then Im(a — afa) < Im(«a) for some § € S.

Pro o f. Assume that « ¢ V(5). Then, we have that Im(«) is not a small submodule of M.
It means that there exists a proper submodule A of M such that A 4+ Im(a) = M. We have the
natural isomorphism

M/(ANIm(a)) = M/ Im(a) @ M/A.

Since M is coretractable, there exists a nonzero homomorphism M/A — M. Tt follows that
there is a nonzero endomorphism A of M such that A is contained in Ker()\). Then, we have
Im(a) + Ker(A\) = M, and so (Aa)(M) = A\(M). Since M is pseudo semi-projective, (A«x)S =
AS and so A = Aas for some s € S. On the other hand, as A is nonzero, there is m € M such that
A(m) is nonzero. Call y = as(m) € Im(«). One can check that y and A(y) are nonzero. Next,
we show that y is not in Im(a — asa). Indeed, suppose that y = (o — asa)(z) € Im(a — asa)
for some © € M. Then, we have

Ay) = Ma — asa)(z) = (Aa — dasa)(z) = (Aa — Aa)(z) = 0.

This is a contradiction, and so y € Im(«) \ Im(a — asa). O

From the proof of [15, 22.2], we have the following result of the Jacobson radical of a pseudo
semi-projective module.

Lemma 7.Let M be a right R-module. If M is a pseudo semi-projective module with
S = Endg(M), then V(S) < J(S).

Theorem 2. Let M be a coretractable pseudo semi-projective module with S = Endg(M). Then
the following conditions are equivalent:

1) S is left perfect;

2) for any infinite sequence o, (v, . .. € S, the chain Im(ay) > Im(ayag) > ... is stationary.
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Proof. (1) = (2). Let aj,aq,... € S. We have that S is left perfect and obtain that
S satisfies DCC on finitely generated right ideals. Then, the chain a;.S > ajaeS > ... terminates.
Thus, there exists n > 0 such that ayas ..., = ajas...apS for all k > n. It follows
that ayas ..., = ajan...apf and ajas ... = ajas...a,g for some f,g € S. Thus,
s .. .on(M) = ajay . ..o (M) for all k > n.

(2) = (1). Firstly, we show that S/V(.S) is a von Neumann regular ring. Let a; ¢ V(S). Then
by Lemma 6, there is 71 € S such that Im(a; — a3y101) < Im(ay). Put ay = a3 — ayy10, and
so Im(ag) < Im(ay). If ay € V(S), then we have ay = ay3y144, i.e., a; is a regular element
of S/V(S) (where 5 = s+ V(S5) forall s € 5). If ap & V(S), there exists a3 € S such that
Im(as) < Im(as) with ag = g — gy for some 2 € S by the preceding proof. Repeating

the above-mentioned process, we get a strictly ascending chain Im(a;) > Im(az) > ..., where
Qi1 = O — QG704 for some Y € S, 1= 1, 2, ....Let

br=o, fo=1—mo, ..., By =1—, ...,
then

ap =B, ag = Bifa, ..., a1 = BB Pigrs -,

and we have the following strictly ascending chain Im(3;) > Im(5;52) > ..., which contra-
dicts the hypothesis. Hence there exists a positive integer m such that «,,,1 € V(5), i.e,
O — O YmQ € V(S). This shows that a,, is a regular element of S/V(S), and hence
Qm—1, Om—2, . . ., @ are regular elements of S/V(S) by Lemma 5, i.e., S/V(S) is von Neumann
regular.

Now, we show that J(S) is left T-nilpotent. In fact, if for any sequence g, as,...
from J(S), the chain Im(c;) > Im(ajan) > ... is stationary. Thus, there exists n such that
s .. .on(M) = aqas. ..o (M) for all £ > n. We have that M is pseudo semi-projective
and obtain that ajas ..., S = ajay ... aS for all k > n. Then, cyas ..., (1 — apg1s) =0
for some s € S, and so ayay...a, = 0 (since 1 — av,.15 is unit). It means that J(S) is left
T-nilpotent. We have that V(5) < J(.S) and obtain that V(.S) is also left T-nilpotent.

Next, we prove that S/V(S) contains no infinite sets of non-zero orthogonal idempotents.
Indeed, let 1,e5,...,¢6k,... be a countably infinite set of non-zero orthogonal idempotents
in S/V(S). Then, there exist non-zero orthogonal idempotents e;, es, ..., g, ... in S such that
i = e+ V(9), 1 =1,2,..., by [3, Proposition 27.1]. Put a; = 1 — (e; + e+ ...+ ¢),
1= ]_, 2, .... Then Qi1 = O — G610 One can check that €101 = 0 and €110 = €41 7& 0.
Take m € M with e;1(m) # 0. Call y = «a;(m), and so y is nonzero in Im(«;). Suppose that
y € Im(a;y1), y = a;41(t) for some ¢ € M. Then, we have

eir10(m) = €i11(y) = ey (t) = 0.
Thus, e;11(m) = e;110;(m) = 0, a contradiction. It means that we have the strict sequence
Jr

Im(ozz) > Im(ozz 1 1= 1,2,.... Let 6@ =1- €, 1 = 1,2,.... Then a; = Blﬁzﬁz and
Im(B15s...0;) > I (B1B2 ... Bit1), © = 1,2,.... We obtain the following strictly ascending

chain Im(5;) > Im(p152) > ..., a contradiction. Hence S/V(S) contains no infinite sets of
non-zero orthogonal idempotents. We deduce that S/V(S) is semisimple. Thus, S/J(S) =
= [S/V(9)]/[J(S)/V(S)] is semisimple. It means that S is left perfect. O

Corollary 4. Let Ry be a coretractable module. If for any infinite sequence r1,79, ... in R, the
chain riR > ryroR > ... is stationary, then R is left perfect.
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Note that if M has DCC on the submodules of the form /M, where [ is a right ideal
of Endg(M), V(S) is nilpotent. Thus, we have the following corollary.

Corollary 5. Let M be a coretractable pseudo semi-projective module with S = Endg(M). If M
has DCC on the submodules of the form I M, where I is a right ideal of S, then S is semiprimary.

Next, we characterize left perfect rings via the pseudo semi-projectivity of modules without
the coretractability.

A submodule N of M is called M-cyclic if, it is an epimorphic image of an endomorphism
of M.

Proposition 4. Let M be a pseudo semi-projective R-module satisfying DCC for M-cyclic sub-
modules. Then Endg (M) is left perfect.

Proof Take S = Endg(M). We consider a descending chain of cyclic right ideals

f1S > fQS > . yielding a descending chain of M-cyclic submodules fi(M) > fo(M) >
> ... By the hypothes1s there is n such that f,,(M) = f,.x(M) for all £ > 0. Since M
is seml-prOJectlve fnS = fnisS forall £ > 0 by Lemma 1. Thus, S is left perfect. OJ

Corollary 6. If M is a semi-projective R-module satisfying DCC for M-cyclic submodules, then
Endg(M) is left perfect.

§ 3. On maximal ideals

Recall that a module M is called quasi-projective if every homomorphism from M to each
quotient module of M can be lifted to an endomorphism of M. One can check that every quasi-
projective module is pseudo semi-projective. The following example shows that the converse is
not true in the general case.

Lo To 7y
Example 1 (see [5, Example 5.1]). Let R= | 0 Z; 0 |. Since R is a finite-dimensional
0 0 Z

algebra over Z,, the functors

Homg,(—,Zs): Mod-R — R-Mod
and

Homy, (—,Zs): R-Mod — Mod-R

establish a contravariant equivalence between the subcategories of left and right finitely generated
modules over R. Then, Homg,(M,Z,) is a pseudo semi-projective left R-module and it is not
quasi-projective.

Let M be a right R-module with S = Endg(M). A nonzero module M is said to be hollow
if every proper submodule is small in M. An element A in S is called a right hollow element
of S if h is nonzero and Im(h) is a hollow submodule of M.

Let h be a right hollow element of S. We call

Vi ={s €S| Im(s)+ Ker(h) # M}.

One can check that V), is a proper right ideal of S.
Let « be an endomorphism of M with S = Endg(M). We denote by

rs(a) ={s€ S |as=0}

the annihilator of « in S. If « is a right hollow element of .S, then rg(a) is a right ideal of .S
contained in V,.
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Lemma 8. Assume that M is a pseudo semi-projective module. If h is a right hollow element
of S, Vy, is the unique maximal right ideal of S containing rs(h).

Proof. Take s an element of S and s ¢ V). From the definition of V), it infers that
Im(s) + Ker(h) = M. Then, hs(M) = h(M). By Lemma 1, we have that hsS = hS and obtain
that h = hsk for some k in S. It follows that S = rg(h) + sS <V, + sS, and so S = V), + sS.
It’s shown that V), is maximal in S. It remains to show that V), is the unique right ideal of S
containing rg(h). Indeed, let I be another maximal ideal of S containing rg(h) and I # V.
Then, there exists an element o € I \ V. It follows that Im(«) + Ker(h) = M. By the process
of proof above, we have S = aS + rg(h) < I and so S = I, a contradiction. O

A family {M,}, of proper submodules of M is called coindependent if, for any A € A and
any finite subset I C A\ {\}, M, + | M; = M.
1elF
Lemma 9 (see [13, Lemma 3.5]). Assume that M has coindependent submodules M, Ms, . .., My,
k
such that (| M; < M and M /M; is hollow for every 1 < i < k. If M has a submodule L such

1=1
that L + M; # M for every 1 < i < k, then L is small in M.

Lemma 10. Let M be a pseudo semi-projective right R-module with S = Endg(M) and {p;}¥_,
be a family of nonzero elements of S with {Ker(p1),Ker(ps),...,Ker(px)} a finite coindepen-
dent family in M and {Im(p1), Im(ps),...,Im(p)} hollow modules. If I is a maximal right
ideal of S which is not of the form Vy, for some right hollow element h of S, then there is an
endomorphism v € I such that

[m(1 — ) + [ Ker(:)]/ [ Ker(p:) < M/ [ ) Ker(p:)

=1 =1 =1

k

Proof Take W = () Ker(y;). Let « € I\ V,, and so M = Im(«) + Ker(y1). Then
i=1

©1(M) = (pra)(M). From Lemma 1, it immediately infers that .S = (¢10)S. Thus, ¢; =

= (p1a)s; = p1(asy) for some s; € S. Call ¢y = asy € I, and so (1 — 1) = 0. This implies

that Im(1 — +)y) + Ker(y1) = Ker(yp1) # M. Suppose that Im(1 — ¢y) + Ker(p;) # M for all

2 < j < k. We have {Ker(p;), Ker(y2),...,Ker(pg)} is a finite coindependent family in M
k

and obtain that there is an isomorphism ¢: M /W — @ M/ Ker(yp;) defined by
i=1

o(m+ W) = (m+ Ker(p1), m + Ker(ps),...,m+ Ker(ex)).

i m(1 — o) + Ker(pi),  Im(1—4) +W
One can check that ¢ [ﬂ}l RKer(2) | = % :
M/ Ker(p;) = Im(yp;) is hollow, (Im(1 — ¢) + W)/W < M/W. Without loss of general-
ity, we now assume that Im(1 — ;) + Ker(p2) = M. Then po(1 — 1)(M) = po(M). Since
©o(M) is hollow, po(1 — 1p1)(M) is hollow. Thus po(1 — ¢4) is a right hollow element of S.
Since I # V,,(1-v,) and V,,(1—y,) is @ maximal right ideal of .S, we take h € I\ V,,(1-y,). By
using the above argument, we can find sy € S such that po(1 — 91) = pa(1 — ¢1)hs,, and so
wo(1 — (Y1 + (1 — 1)hse) = 0. Put ¢y = 11 + (1 — 1) hse. Then, we have ¢;(1 — 1)5) = 0 for
all 7+ = 1,2. Continuing this process, we eventually get a ¢» € I such that ;(1 — ) = 0 for all
i=1,2,..., k. Thus, Im(1 —¢) < W. We deduce that [Im(1 — ) + W]/W <« M/W. O

Since every
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If M has coindependent submodules { My, M, ..., M} such that ﬂ M; < M and M/M,;

is hollow for every 1 < ¢ < k, M 1is said to have hollow dzmenszon k, denoting this by
hdim (M) = k.

Theorem 3. Let M be a coretractable pseudo semi-projective module having finite hollow dimen-
sion with S = Endg(M). Then

1) if I is a maximal right ideal, then I =V}, for some right hollow element h € S,

2) S is semilocal.

Proof Assume that M has finite hollow dimension, there exists a coindependent family
{N1, Ny, ..., N,} of submodules of M, where M /Ny, M/Ns, ..., M/N, are hollow, (| N; < M
i=1
and an isomorphism M/(( N;) = @, (M/N;). Take m;: M — M/M; the natural pro-
i=1
jections for all j = 1,2,...,n. We have that M is coretractable, there is a nonzero homo-
morphism f;: M/N; — M. Then, we have the homomorphisms h; = f;m; € S for all
j = 1,2,...,n. One can check that N; < Ker(h;) for all j = 1,2,...,n. We deduce that
M/ Ker(h;) is hollow and the family {Ker(h,), Ker(hs),...,Ker(h,)} is coindependent. Take

W = N, Ker(h;), and so ﬂ N; < W. We have that M /() Ker(h;)) = @ M/ Ker(h;) and
i=1 i=1

obtain that hdim (M/( ﬂ Ker(h;))) = n = hdim (M). Thus, W < M by [4, 5.4(2)].

(1) Suppose that I i 1s a maximal right ideal of S with I # V), for every right hollow element h
of S. Then by Lemma 10, there is a homomorphism ¢ in I such that [Im(1 — ) + W]/W <
< M/W. We have that W < M and obtain that Im(1 — ¢) < M. From Lemma 7, it
immediately infers that 1 — p € J(5) < I and so 1 € I, a contradiction.

(2) We have J(S) < ﬂ Vi, If f € ﬂVhl, Im(f) + Ker(h;) # M for each j = 1,2,...,n
=1

It follows that Tm(f) < M by Lemma 9, and so f € J(S) by Lemma 7. Thus, J(S) = (| V
1
We deduce that S is semilocal. O

Corollary 7. Let R be a coretractable ring with finite hollow dimension. If I is a maximal right
ideal of R, I =V, for some right hollow element h € R.

Example 2. (1) Let R be the ring of integers Z. Take M = Z. Then M is pseudo semi-projective
with infinite hollow dimension. Note that Endg (M) contains no hollow elements. Thus the
statements (1) and (2) of Theorem 3 are not satisfied. This shows that the hypothesis “M has
finite hollow dimension” in Theorem 3 is not superfluous.

(2) Let R be a nonlocal commutative domain with finitely many maximal ideals. Then, every
nonzero element h in R is not hollow. So Endg(R) contains no hollow elements. Thus the
statements (1) and (2) of Theorem 3 are not satisfied. Note that R is pseudo semi-projective
with finite hollow dimension. But R is not coretractable because Hom(R/J(R), R) = 0. This
example shows that Theorem 3 is not true if M is not coretractable.
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XaHTT
IlceBaonoynpoeKTHBHBIE MOAY/IH U KOJIbLA 3HAOMOP(du3MOB

Kniouesvie cosa: TICEBIONOIYIPOSKTUBHBIM MOYIIb, IIyCTOTENbII MOLYJIb, KOHEUHAs! pa3MEPHOCTD IIyCTO-
ThI, COBEPIIIEHHOE KOJbLIO.

VIIK 512.553
DOI: 10.35634/vm220405

Monymne M Ha3bIBaeTCs MCEBIONONYIPOSKTUBHBIM, €CIH IS Beex «, 5 € End (M) takux, uro Im(a) =
Im(B), emonneno aEndgr(M) = [ Endg(M). B nannoit paGote Mbl M3yd4aeM HEKOTOpBIC CBO¥-
CTBa ICEBIOIMOIYIIPOCKTHBHBIX MOMYICH M MX Kouxel 3HmoMopdu3mMoB. [TokasaHo, 4T0 KOmblO R sBIs-
eTCsl MOJY/TOKAaJbHBIM TOLA M TONBKO TOINA, KOIAA KX MOJYHPUMUTHBHBIA KOHEYHO IOPOXKICH-
HBII TIpaBblii R-MOIYJb SIBJISICTCS IICEBIOMONYPOCKTHBHBIM. KpoMe TOro, Mbl MOKa3bIBaeM, YTO €CIH
M — xoperpakTaOenbHbIH [CEBIONOMYIPOCKTHBHBIH MOAYIb C KOHEYHON Pa3MEPHOCTHIO MYCTOTHI, TO
Endr(M) — monysnokanpHOE KOJNBIIO M Ka/Iblii MakCHMalbHBIA mpaBbiii uaean Endg (M) umeer Bux
{s € Endr(M)|Im(s) + Ker(h) # M} mns nexoroporo sugomopdusma h moxyns M, rae h(M ) mycro-
TEJIBIH.
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