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PSEUDO SEMI-PROJECTIVE MODULES AND ENDOMORPHISM RINGS

A module M is called pseudo semi-projective if, for all α, β ∈ EndR(M) with Im(α) = Im(β), there

holds αEndR(M) = β EndR(M). In this paper, we study some properties of pseudo semi-projective

modules and their endomorphism rings. It is shown that a ring R is a semilocal ring if and only if each

semiprimitive finitely generated right R-module is pseudo semi-projective. Moreover, we show that if M is

a coretractable pseudo semi-projective module with finite hollow dimension, then EndR(M) is a semilocal

ring and every maximal right ideal of EndR(M) has the form {s ∈ EndR(M)| Im(s)+Ker(h) 6= M} for

some endomorphism h of M with h(M) hollow.
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Introduction

Following [15], a module M is called semi-projective if, for any submodule N of M , every

diagram with exact row

M

g

����

M
f

// N // 0

can be extended by a homomorphism h : M → M with fh = g. It is equivalent to fS =
= Hom(M, f(M)) for every f ∈ EndR(M) = S. One can check that M is semi-projective if and

only if for all α, β ∈ EndR(M) with Im(α) ≤ Im(β), there holds αEndR(M) ≤ β EndR(M).
The endomorphism rings of semi-projective modules are studied. It is shown that if M is a

finitely generated, semi-projective R-module satisfying DCC for M-cyclic submodules, then

EndR(M) satisfies DCC for cyclic left ideals [15, 31.10]. Recently, some authors consid-

ered some generalizations of semi-projective modules and dual automorphism-invariant modules

(see [1, 2, 5, 7, 8, 10–12, 14]).

A generalization of semi-projective modules is considered, namely, pseudo semi-projective

modules. In [10], a right R-module M is called pseudo semi-projective if, for any endomor-

phism ε of M , every epimorphism p : M → ε(M) and every epimorphism f : M → ε(M),
there exists an endomorphism h of M such that ph = f . A characterization of Artinian pseudo

semi-injective modules is considered. It is shown that if M is an Artinian pseudo semi-injective

module then S = EndR(M) is semiprimary (see [10, Theorem 3.10]). Moreover, the author [10]

studied semiperfect rings and perfect rings via modules having pseudo semi-projective covers.

In this paper, we continue on pseudo semi-projective modules and their endomorphism rings.

It is shown that a ring R is a semilocal ring if and only if each semiprimitive finitely gener-

ated right R-module is pseudo semi-projective (Theorem 1). Considering coretractable modules,

we show that if M is a coretractable pseudo semi-projective module with S = EndR(M),
then S is left perfect if and only if for any infinite sequence s1, s2, . . . ∈ S, the chain

Im(s1) ≥ Im(s1s2) ≥ . . . is stationary (Theorem 2). Moreover, if M is a coretractable pseudo
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semi-projective module with finite hollow dimension, then EndR(M) is a semilocal ring and

every maximal right ideal of EndR(M) has the form {s ∈ EndR(M)| Im(s) + Ker(h) 6=M} for

some endomorphism h of M with h(M) hollow (Theorem 3).

§ 1. Notations and definitions

Throughout this article all rings are associative rings with unity and all modules are right

unital modules over a ring. We denote by |X| the cardinality of a set X . For a submodule N
of M , we write N ≤ M (N < M,N ≪ M) iff N is a submodule of M (respectively, a proper

submodule, a small submodule). We denote by J(R) the Jacobson radical of the ring R. For any

term not defined here the reader is referred to [3] and [9].

§ 2. Some results of pseudo semi-projective modules

Following [10], a right R-module M is called pseudo semi-projective if, for any endomor-

phism ε of M , every epimorphism p : M → ε(M) and every epimorphism f : M → ε(M), there

exists an endomorphism h of M such that ph = f , or equivalently if, for any endomorphism ε
of M and every epimorphism f from M to M/Ker(ε), there exists an endomorphism h of M
such that πh = f with π : M → M/Ker(ε) the natural projection.

Lemma 1 (see [10, Lemma 3.1]). Let M be a right R-module and S = EndR(M). Then the

following are equivalent:
1) M is pseudo semi-projective;

2) for all α, β ∈ S with Im(α) = Im(β), αS = βS.

Lemma 2. Let N be a submodule of a pseudo semi-projective right R-module M . Then, N is a

direct summand of M if and only if M/N is isomorphic to a direct summand of M .

P r o o f. Assume that N is a direct summand of M . One can check that M/N is isomorphic

to a direct summand of M . Now, assume that M/N is isomorphic to a direct summand of M .

Let ψ : M/N → K be an isomorphism with M = K ⊕ K ′. Let π : M → K be the canonical

projection, ι : K → M be the inclusion map and p : M → M/N be the natural projection. We

consider the following diagram

M

π

��

g

zz

M
p

//M/N
ψ

// K

��

// 0

0

Note that K is an epimorphic image of M . Since M is pseudo semi-projective, ψpg = π for

some endomorphism g of M or pg = ψ−1π. Then, we have pgιψ = 1M/N . It shows that p is a

splitting epimorphism, and so N is a direct summand of M . �

Corollary 1. If M = A⊕B is a pseudo semi-projective module, then every epimorphism A→ B
splits.

P r o o f. Assume that M = A ⊕ B is a pseudo semi-projective right R-module. Call

f : A→ B an epimorphism. Then, A/Ker(f) is isomorphic to B being a direct summand of M .

From Lemma 2, it immediately infers that Ker(f) is a direct summand of M , and so it is a direct

summand of A. We deduce that f splits. �
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Proposition 1. The following conditions are equivalent for a ring R:

1) R is semisimple Artinian;

2) each finitely generated right R-module is pseudo semi-projective;

3) each 2-generated right R-module is pseudo semi-projective.

P r o o f. (1)⇒ (2) ⇒ (3) are obvious.

(3)⇒ (1) In order to prove the semisimplicity of R, we show that every simple right R-mod-

ule is projective. Indeed, let M be a simple right R-module. Take N = R ⊕M . Then, N is a

2-generated right R-module, and so it is pseudo semi-projective. Note that M is an epimorphic

image of R. Then, it follows, from Corollary 1, that M is isomorphic to a direct summand of RR,

and so it is projective. We deduce that R is semisimple Artinian. �

Recall that a module P is a pseudo semi-projective cover (resp., projective cover) of a right

R-module M if, there exists an epimorphism p : P → M such that P is pseudo semi-projective

(resp., projective) and Ker(p) is small in P [10].

Proposition 2. Let f : P →M be an epimorphism from a right R-module M to a projective right

R-module P . Then

1) P ⊕M is pseudo semi-projective if and only if M is projective;

2) P ⊕M has a pseudo semi-projective cover if and only if M has a projective cover.

P r o o f. (1) is obvious by Corollary 1.

(2) If M has a projective cover, then P ⊕M has a pseudo semi-projective cover. Assume that

P ⊕M has a pseudo semi-projective cover. We show that M is projective. Take q : Q→ P ⊕M
an epimorphism with small kernel and Q pseudo semi-projective. Call π : P ⊕ M → P the

canonical projection. Then, π ◦ q : Q → P is an epimorphism. We have that P is projective and

obtain that π ◦ q is a splitting epimorphism. Therefore, there exists a monomorphism β : P → Q
such that π◦q◦β = 1P , and so Q = Im(β)⊕Ker(π◦q). Let P ′ = Ker(π◦q) and q1 = q|P ′ . Then,

we have q1(P
′) = q(P ′) = Ker(π) = M which implies that q1 : P

′ → M is an epimorphism.

One can check that Ker(q1) = Ker(q), and so Ker(q1) is small in P ′. Next, we show that P ′ is

projective. We consider the following diagram

P

P ′ M 0

0

❄

f

♣

♣

♣

♣

♣

♣

♣

♣

✠

✲
q1

❄

✲

We have that P is projective and obtain that there is a homomorphism g : P → P ′ such that

the above diagram is commutative, and so q1 ◦ g = f . Since Ker(q1) is small in P ′, g is an

epimorphism. On the other hand, Q = Im(β) ⊕ P ′ ∼= P ⊕ P ′ is pseudo semi-projective. By

Corollary 1, g splits and so P ′ is isomorphic to a direct summand of P . Thus, P ′ is projective. �

Recall that a module M is called semiprimitive if it’s Jacobson radical is zero ( [6]).

Next, we give the structure of rings via semiprimitive finitely generated modules accompany-

ing with the pseudo semi-projectivity of modules.

Lemma 3. If each semiprimitive finitely generated right R-module is pseudo semi-projective, then

every quotient ring of R has this property.
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P r o o f. Let S be a quotient ring of R. Assume that M is a semiprimitive finitely generated

right S-module. Then M is also a semiprimitive finitely generated right R-module. By the

hypothesis, M is a pseudo semi-projective right R-module. It follows that M is a pseudo semi-

projective right S-module. �

Lemma 4 (see [3, Proposition 10.15]). The following conditions are equivalent for a right R-mod-

ule M:

1) M is semiprimitive Artinian;

2) M is semiprimitive finitely cogenerated;

3) M is a semisimple finitely generated module.

Corollary 2. A semiprimitive Artinian module is pseudo semi-projective.

The following result for semilocal rings via the pseudo semi-projectivity of modules is true.

Theorem 1. The following conditions are equivalent for a ring R :

1) R is a semilocal ring (i. e., R/J(R) is semisimple Artinian);

2) each semiprimitive finitely generated right R-module is pseudo semi-projective.

P r o o f. (1) ⇒ (2). Assume that R is semilocal. From Corollary 2, we show that every

semiprimitive finitely generated right R-module is Artinian. In order to complete the proof we

will continue by induction on generated elements of M . Assume that M is generated by n
elements. The case n = 1, we have M is a cyclic module. This means that M ∼= R/K for

some right ideal K of R. By assumption, we have J(R/K) = 0 or J(R) is contained in K,

and so R/K ∼= (R/J(R))/(K/J(R)). We have that R/J(R) is a semilocal ring and obtain that

R/J(R) is semisimple Artinian, and so R/K is semisimple. It follows that R/K is Artinian.

Suppose now that each semiprimitive right R-module generated by n = k elements is Artinian.

Call M = m1R +m2R + · · · +mk+1R a semiprimitive finitely generated right R-module. We

show that M is Artinian. Indeed, we have the following short exact sequence:

0 → m1R→ M →M/m1R → 0.

The induction hypothesis can be applied to the modules m1R and M/m1R. It follows that

m1R and M/m1R are Artinian modules, which implies that M is Artinian. Thus, it is shown

that every semiprimitive finitely generated right R-module is Artinian. We deduce that every

semiprimitive finitely generated right R-module is pseudo semi-projective.

(2) ⇒ (1) Let R̄ = R/J(R). We show that every simple right R̄-module is projective. Indeed,

let S be an arbitrary simple right R̄-module. Take M = R̄R̄ ⊕ S. Then, M is a semiprimitive

finitely generated R̄-module. By (2) and Lemma 3, we have that M is pseudo semi-projective.

Note that S is an epimorphic image of R̄R̄. It follows, from Corollary 1, that S is isomorphic to

a direct summand of R̄R̄, and so S is projective. We deduce that R̄ is a semilocal ring. �

Corollary 3. The following conditions are equivalent for a ring R:

1) R is a semilocal ring;

2) each semiprimitive 2-generated right R-module is pseudo semi-projective.

Let N and L be submodules of a right R-module M . N is called a supplement of L, if

N + L = M and N ∩ L ≪ N . Recall that a submodule U of the R-module M has ample

supplement in M if, for every V ≤ M with U + V = M , there is a supplement V0 of U with

V0 ≤ V . M is called supplemented (resp., amply supplemented) if each of its submodules has a

supplement (resp., ample supplement) in M (see [15]).

From Corollary 1, we have the following results.
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Proposition 3. For a ring R, the following statements are equivalent:

1) R is right perfect;

2) every pseudo semi-projective right R-module is amply supplemented;

3) every pseudo semi-projective right R-module is supplemented.

Let M be a right R-module with S = EndR(M). We denote by

∇(S) = {f ∈ S| Im(f) ≪M}

the set of all endomorphisms of M with small image. One can check that ∇(S) is the ideal of S.

Recall that an element a ∈ R is said to be regular (in the sense of von Neumann) if there

exists x ∈ R such that axa = a. A ring R is called regular if every element of R is regular.

A right R-module M is said to be coretractable if HomR(K,M) 6= 0 for every nonzero

factor K of M .

Lemma 5 (McCoy’s Lemma). Let R be a ring and a, c ∈ R. If b = a− aca is a regular element

of R, then so is a.

P r o o f. This is by definition. �

Lemma 6. Let M be a coretractable pseudo semi-projective module with S = EndR(M). If

α 6∈ ∇(S), then Im(α− αβα) < Im(α) for some β ∈ S.

P r o o f. Assume that α 6∈ ∇(S). Then, we have that Im(α) is not a small submodule of M .

It means that there exists a proper submodule A of M such that A + Im(α) = M . We have the

natural isomorphism

M/(A ∩ Im(α)) ∼= M/ Im(α)⊕M/A.

Since M is coretractable, there exists a nonzero homomorphism M/A → M . It follows that

there is a nonzero endomorphism λ of M such that A is contained in Ker(λ). Then, we have

Im(α) + Ker(λ) = M , and so (λα)(M) = λ(M). Since M is pseudo semi-projective, (λα)S =
λS and so λ = λαs for some s ∈ S. On the other hand, as λ is nonzero, there is m ∈ M such that

λ(m) is nonzero. Call y = αs(m) ∈ Im(α). One can check that y and λ(y) are nonzero. Next,

we show that y is not in Im(α − αsα). Indeed, suppose that y = (α − αsα)(x) ∈ Im(α − αsα)
for some x ∈M . Then, we have

λ(y) = λ(α− αsα)(x) = (λα− λαsα)(x) = (λα− λα)(x) = 0.

This is a contradiction, and so y ∈ Im(α) \ Im(α− αsα). �

From the proof of [15, 22.2], we have the following result of the Jacobson radical of a pseudo

semi-projective module.

Lemma 7. Let M be a right R-module. If M is a pseudo semi-projective module with

S = EndR(M), then ∇(S) ≤ J(S).

Theorem 2. Let M be a coretractable pseudo semi-projective module with S = EndR(M). Then

the following conditions are equivalent:

1) S is left perfect;

2) for any infinite sequence α1, α2, . . . ∈ S, the chain Im(α1) ≥ Im(α1α2) ≥ . . . is stationary.
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P r o o f. (1) ⇒ (2). Let α1, α2, . . . ∈ S. We have that S is left perfect and obtain that

S satisfies DCC on finitely generated right ideals. Then, the chain α1S ≥ α1α2S ≥ . . . terminates.

Thus, there exists n > 0 such that α1α2 . . . αnS = α1α2 . . . αkS for all k > n. It follows

that α1α2 . . . αn = α1α2 . . . αkf and α1α2 . . . αk = α1α2 . . . αng for some f, g ∈ S. Thus,

α1α2 . . . αn(M) = α1α2 . . . αk(M) for all k > n.

(2) ⇒ (1). Firstly, we show that S/∇(S) is a von Neumann regular ring. Let a1 6∈ ∇(S). Then

by Lemma 6, there is γ1 ∈ S such that Im(α1 − α1γ1α1) < Im(α1). Put α2 = α1 − α1γ1α1, and

so Im(α2) < Im(α1). If α2 ∈ ∇(S), then we have ᾱ1 = ᾱ1γ̄1ᾱ1, i. e., ᾱ1 is a regular element

of S/∇(S) (where s̄ = s + ∇(S) for all s ∈ S). If α2 6∈ ∇(S), there exists α3 ∈ S such that

Im(α3) < Im(α2) with α3 = α2 − α2γ2α2 for some γ2 ∈ S by the preceding proof. Repeating

the above-mentioned process, we get a strictly ascending chain Im(α1) > Im(α2) > . . . , where

αi+1 = αi − αiγiαi for some γi ∈ S, i = 1, 2, . . . . Let

β1 = α1, β2 = 1− γ1α1, . . . , βi+1 = 1− γiαi, . . . ,

then

α1 = β1, α2 = β1β2, . . . , αi+1 = β1β2 . . . βi+1, . . . ,

and we have the following strictly ascending chain Im(β1) > Im(β1β2) > . . . , which contra-

dicts the hypothesis. Hence there exists a positive integer m such that αm+1 ∈ ∇(S), i. e.,

αm − αmγmαm ∈ ∇(S). This shows that ᾱm is a regular element of S/∇(S), and hence

ᾱm−1, ᾱm−2, . . . , ᾱ1 are regular elements of S/∇(S) by Lemma 5, i. e., S/∇(S) is von Neumann

regular.

Now, we show that J(S) is left T -nilpotent. In fact, if for any sequence α1, α2, . . .
from J(S), the chain Im(α1) ≥ Im(α1α2) ≥ . . . is stationary. Thus, there exists n such that

α1α2 . . . αn(M) = α1α2 . . . αk(M) for all k > n. We have that M is pseudo semi-projective

and obtain that α1α2 . . . αnS = α1α2 . . . αkS for all k > n. Then, α1α2 . . . αn(1 − αn+1s) = 0
for some s ∈ S, and so α1α2 . . . αn = 0 (since 1 − αn+1s is unit). It means that J(S) is left

T -nilpotent. We have that ∇(S) ≤ J(S) and obtain that ∇(S) is also left T -nilpotent.

Next, we prove that S/∇(S) contains no infinite sets of non-zero orthogonal idempotents.

Indeed, let ε1, ε2, . . . , εk, . . . be a countably infinite set of non-zero orthogonal idempotents

in S/∇(S). Then, there exist non-zero orthogonal idempotents e1, e2, . . . , ek, . . . in S such that

εi = ei + ∇(S), i = 1, 2, . . . , by [3, Proposition 27.1]. Put αi = 1 − (e1 + e2 + . . . + ei),
i = 1, 2, . . . . Then αi+1 = αi−αiei+1αi. One can check that ei+1αi+1 = 0 and ei+1αi = ei+1 6= 0.
Take m ∈ M with ei+1(m) 6= 0. Call y = αi(m), and so y is nonzero in Im(αi). Suppose that

y ∈ Im(αi+1), y = αi+1(t) for some t ∈M . Then, we have

ei+1αi(m) = ei+1(y) = ei+1αi+1(t) = 0.

Thus, ei+1(m) = ei+1αi(m) = 0, a contradiction. It means that we have the strict sequence

Im(αi) > Im(αi+1), i = 1, 2, . . . . Let βi = 1 − ei, i = 1, 2, . . . . Then αi = β1β2 . . . βi and

Im(β1β2 . . . βi) > Im(β1β2 . . . βi+1), i = 1, 2, . . . . We obtain the following strictly ascending

chain Im(β1) > Im(β1β2) > . . . , a contradiction. Hence S/∇(S) contains no infinite sets of

non-zero orthogonal idempotents. We deduce that S/∇(S) is semisimple. Thus, S/J(S) ∼=
∼= [S/∇(S)]/[J(S)/∇(S)] is semisimple. It means that S is left perfect. �

Corollary 4. Let RR be a coretractable module. If for any infinite sequence r1, r2, . . . in R, the

chain r1R ≥ r1r2R ≥ . . . is stationary, then R is left perfect.
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Note that if M has DCC on the submodules of the form IM , where I is a right ideal

of EndR(M), ∇(S) is nilpotent. Thus, we have the following corollary.

Corollary 5. Let M be a coretractable pseudo semi-projective module with S = EndR(M). If M
has DCC on the submodules of the form IM , where I is a right ideal of S, then S is semiprimary.

Next, we characterize left perfect rings via the pseudo semi-projectivity of modules without

the coretractability.

A submodule N of M is called M-cyclic if, it is an epimorphic image of an endomorphism

of M .

Proposition 4. Let M be a pseudo semi-projective R-module satisfying DCC for M-cyclic sub-

modules. Then EndR(M) is left perfect.

P r o o f. Take S = EndR(M). We consider a descending chain of cyclic right ideals

f1S ≥ f2S ≥ . . . ≥ . . . yielding a descending chain of M-cyclic submodules f1(M) ≥ f2(M) ≥
≥ . . . ≥ . . . . By the hypothesis, there is n such that fn(M) = fn+k(M) for all k ≥ 0. Since M
is semi-projective, fnS = fn+kS for all k ≥ 0 by Lemma 1. Thus, S is left perfect. �

Corollary 6. If M is a semi-projective R-module satisfying DCC for M-cyclic submodules, then

EndR(M) is left perfect.

§ 3. On maximal ideals

Recall that a module M is called quasi-projective if every homomorphism from M to each

quotient module of M can be lifted to an endomorphism of M . One can check that every quasi-

projective module is pseudo semi-projective. The following example shows that the converse is

not true in the general case.

Example 1 (see [5, Example 5.1]). Let R =





Z2 Z2 Z2

0 Z2 0
0 0 Z2



. Since R is a finite-dimensional

algebra over Z2, the functors

HomZ2
(−,Z2) : Mod-R → R-Mod

and

HomZ2
(−,Z2) : R-Mod → Mod-R

establish a contravariant equivalence between the subcategories of left and right finitely generated

modules over R. Then, HomZ2
(M,Z2) is a pseudo semi-projective left R-module and it is not

quasi-projective.

Let M be a right R-module with S = EndR(M). A nonzero module M is said to be hollow

if every proper submodule is small in M . An element h in S is called a right hollow element

of S if h is nonzero and Im(h) is a hollow submodule of M .

Let h be a right hollow element of S. We call

Vh = {s ∈ S | Im(s) + Ker(h) 6=M}.

One can check that Vh is a proper right ideal of S.

Let α be an endomorphism of M with S = EndR(M). We denote by

rS(α) = {s ∈ S | αs = 0}

the annihilator of α in S. If α is a right hollow element of S, then rS(α) is a right ideal of S
contained in Vα.
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Lemma 8. Assume that M is a pseudo semi-projective module. If h is a right hollow element

of S, Vh is the unique maximal right ideal of S containing rS(h).

P r o o f. Take s an element of S and s 6∈ Vh. From the definition of Vh, it infers that

Im(s) + Ker(h) =M . Then, hs(M) = h(M). By Lemma 1, we have that hsS = hS and obtain

that h = hsk for some k in S. It follows that S = rS(h) + sS ≤ Vh + sS, and so S = Vh + sS.

It’s shown that Vh is maximal in S. It remains to show that Vh is the unique right ideal of S
containing rS(h). Indeed, let I be another maximal ideal of S containing rS(h) and I 6= Vh.
Then, there exists an element α ∈ I \ Vh. It follows that Im(α) + Ker(h) = M . By the process

of proof above, we have S = αS + rS(h) ≤ I and so S = I , a contradiction. �

A family {Mλ}Λ of proper submodules of M is called coindependent if, for any λ ∈ Λ and

any finite subset I ⊆ Λ \ {λ},Mλ +
⋂

i∈F

Mi =M .

Lemma 9 (see [13, Lemma 3.5]). Assume thatM has coindependent submodulesM1,M2, . . . ,Mk

such that
k
⋂

i=1

Mi ≪ M and M/Mi is hollow for every 1 ≤ i ≤ k. If M has a submodule L such

that L+Mi 6=M for every 1 ≤ i ≤ k, then L is small in M .

Lemma 10. Let M be a pseudo semi-projective right R-module with S = EndR(M) and {ϕi}
k
i=1

be a family of nonzero elements of S with {Ker(ϕ1),Ker(ϕ2), . . . ,Ker(ϕk)} a finite coindepen-

dent family in M and {Im(ϕ1), Im(ϕ2), . . . , Im(ϕk)} hollow modules. If I is a maximal right

ideal of S which is not of the form Vh for some right hollow element h of S, then there is an

endomorphism ψ ∈ I such that

[Im(1− ψ) +
k
⋂

i=1

Ker(ϕi)]/
k
⋂

i=1

Ker(ϕi) ≪M/
k
⋂

i=1

Ker(ϕi)

P r o o f. Take W =
k
⋂

i=1

Ker(ϕi). Let α ∈ I \ Vϕ1
and so M = Im(α) + Ker(ϕ1). Then

ϕ1(M) = (ϕ1α)(M). From Lemma 1, it immediately infers that ϕ1S = (ϕ1α)S. Thus, ϕ1 =
= (ϕ1α)s1 = ϕ1(αs1) for some s1 ∈ S. Call ψ1 = αs1 ∈ I , and so ϕ1(1− ψ1) = 0. This implies

that Im(1 − ψ1) + Ker(ϕ1) = Ker(ϕ1) 6= M . Suppose that Im(1 − ψ1) + Ker(ϕj) 6= M for all

2 ≤ j ≤ k. We have {Ker(ϕ1),Ker(ϕ2), . . . ,Ker(ϕk)} is a finite coindependent family in M

and obtain that there is an isomorphism φ : M/W →
k
⊕

i=1

M/Ker(ϕi) defined by

φ(m+W ) = (m+Ker(ϕ1), m+Ker(ϕ2), . . . , m+Ker(ϕk)).

One can check that φ−1[
k
⊕

i=1

Im(1− ψ1) + Ker(ϕi)

Ker(ϕi)
] =

Im(1− ψ1) +W

W
. Since every

M/Ker(ϕj) ∼= Im(ϕj) is hollow, (Im(1 − ψ1) + W )/W ≪ M/W . Without loss of general-

ity, we now assume that Im(1 − ψ1) + Ker(ϕ2) = M . Then ϕ2(1 − ψ1)(M) = ϕ2(M). Since

ϕ2(M) is hollow, ϕ2(1 − ψ1)(M) is hollow. Thus ϕ2(1 − ψ1) is a right hollow element of S.

Since I 6= Vϕ2(1−ψ1) and Vϕ2(1−ψ1) is a maximal right ideal of S, we take h ∈ I \ Vϕ2(1−ψ1). By

using the above argument, we can find s2 ∈ S such that ϕ2(1 − ψ1) = ϕ2(1 − ψ1)hs2, and so

ϕ2(1− (ψ1 + (1− ψ1)hs2) = 0. Put ψ2 = ψ1 + (1− ψ1)hs2. Then, we have ϕi(1− ψ2) = 0 for

all i = 1, 2. Continuing this process, we eventually get a ψ ∈ I such that ϕi(1 − ψ) = 0 for all

i = 1, 2, . . . , k. Thus, Im(1− ψ) ≤W. We deduce that [Im(1− ψ) +W ]/W ≪M/W . �
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If M has coindependent submodules {M1,M2, . . . ,Mk} such that
k
⋂

i=1

Mi ≪ M and M/Mi

is hollow for every 1 ≤ i ≤ k, M is said to have hollow dimension k, denoting this by

hdim (M) = k.

Theorem 3. Let M be a coretractable pseudo semi-projective module having finite hollow dimen-

sion with S = EndR(M). Then

1) if I is a maximal right ideal, then I = Vh for some right hollow element h ∈ S;
2) S is semilocal.

P r o o f. Assume that M has finite hollow dimension, there exists a coindependent family

{N1, N2, . . . , Nn} of submodules of M , where M/N1,M/N2, . . . ,M/Nn are hollow,
n
⋂

i=1

Ni ≪M

and an isomorphism M/(
n
⋂

i=1

Ni) ∼=
⊕n

i=1(M/Ni). Take πj : M → M/Mj the natural pro-

jections for all j = 1, 2, . . . , n. We have that M is coretractable, there is a nonzero homo-

morphism fj : M/Nj → M . Then, we have the homomorphisms hj = fjπj ∈ S for all

j = 1, 2, . . . , n. One can check that Nj ≤ Ker(hj) for all j = 1, 2, . . . , n. We deduce that

M/Ker(hj) is hollow and the family {Ker(h1),Ker(h2), . . . ,Ker(hn)} is coindependent. Take

W =
⋂n
i=1Ker(hi), and so

n
⋂

i=1

Ni ≤ W . We have that M/(
n
⋂

i=1

Ker(hi)) ∼=
n
⊕

i=1

M/Ker(hi) and

obtain that hdim (M/(
n
⋂

i=1

Ker(hi))) = n = hdim (M). Thus, W ≪M by [4, 5.4(2)].

(1) Suppose that I is a maximal right ideal of S with I 6= Vh for every right hollow element h
of S. Then by Lemma 10, there is a homomorphism ϕ in I such that [Im(1 − ϕ) +W ]/W ≪
≪ M/W . We have that W ≪ M and obtain that Im(1 − ϕ) ≪ M . From Lemma 7, it

immediately infers that 1− ϕ ∈ J(S) ≤ I , and so 1 ∈ I , a contradiction.

(2) We have J(S) ≤
n
⋂

i=1

Vhi . If f ∈
n
⋂

i=1

Vhi , Im(f) + Ker(hj) 6= M for each j = 1, 2, . . . , n.

It follows that Im(f) ≪ M by Lemma 9, and so f ∈ J(S) by Lemma 7. Thus, J(S) =
n
⋂

i=1

Vhi .

We deduce that S is semilocal. �

Corollary 7. Let R be a coretractable ring with finite hollow dimension. If I is a maximal right

ideal of R, I = Vh for some right hollow element h ∈ R.

Example 2. (1) Let R be the ring of integers Z. Take M = Z. Then M is pseudo semi-projective

with infinite hollow dimension. Note that EndR(M) contains no hollow elements. Thus the

statements (1) and (2) of Theorem 3 are not satisfied. This shows that the hypothesis “M has

finite hollow dimension” in Theorem 3 is not superfluous.

(2) Let R be a nonlocal commutative domain with finitely many maximal ideals. Then, every

nonzero element h in R is not hollow. So EndR(R) contains no hollow elements. Thus the

statements (1) and (2) of Theorem 3 are not satisfied. Note that R is pseudo semi-projective

with finite hollow dimension. But R is not coretractable because Hom(R/J(R), R) = 0. This

example shows that Theorem 3 is not true if M is not coretractable.
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Псевдополупроективные модули и кольца эндоморфизмов
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ты, совершенное кольцо.

УДК 512.553

DOI: 10.35634/vm220405

Модуль M называется псевдополупроективным, если для всех α, β ∈ EndR(M) таких, что Im(α) =
Im(β), выполнено αEndR(M) = β EndR(M). В данной работе мы изучаем некоторые свой-

ства псевдополупроективных модулей и их колец эндоморфизмов. Показано, что кольцо R явля-

ется полулокальным тогда и только тогда, когда каждый полупримитивный конечно порожден-

ный правый R-модуль является псевдополупроективным. Кроме того, мы показываем, что если

M — коретрактабельный псевдополупроективный модуль с конечной размерностью пустоты, то

EndR(M) — полулокальное кольцо и каждый максимальный правый идеал EndR(M) имеет вид

{s ∈ EndR(M)| Im(s) + Ker(h) 6= M} для некоторого эндоморфизма h модуля M , где h(M) пусто-

телый.
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