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WEAKLY INVO-CLEAN RINGS HAVING WEAK INVOLUTION

We completely describe up to an isomorphism the structure of weakly invo-clean rings possessing weak

involution. The obtained results expand two own establishments, namely those from Afrika Mat. (2017)

concerning weakly invo-clean rings as well as those from Far East J. Math. Sci. (2021) concerning

invo-clean rings with weak involution.
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Introduction and background

Everywhere in the text of the current paper, all rings R will be assumed associative, containing

the identity element 1, which in general differs from the zero element 0 of R. Our standard

terminology and notations are mainly in agreement with [13]. Specifically, U(R) denotes the

group of all units in R, Id(R) the set of all idempotents in R, Nil(R) the set of all nilpotents

in R, and J(R) the Jacobson radical of R. More unusual notions and concepts will be stated

explicitly in the sequel.

Recall that an element w in a ring R is involution provided that w2 = 1. By writing v2 = ±1
for some element v from a ring R, we shall mean that either v2 = 1 or v2 = −1 and we shall

call v weak involution (see, e.g., [1]).

In [5] we have described up to an isomorphism those rings R whose elements r satisfy the

condition that r = rvr (resp., r = r2v) for some involution v depending on r. On the other hand,

in [2–4, 7, 8] we have completely characterized three special classes of clean rings; e. g., whose

elements are of the kind v + e, where v is an involution and e is an idempotent as the other two

closely related classes have a rather more complicated structure than that of the class presented

first.

The motivation of writing up this article is to promote a new insight in ring structure by

replacing the existing involution with weak involution, thus obtaining a definite complication in

the characterization due to the specific nature.

§ 1. Weakly invo-clean rings with weak involution

Referring to [3], a ring R is called weakly invo-clean if, for each r ∈ R, there are v ∈ R with

v2 = 1 and e ∈ Id(R) such that r = v + e or r = v − e. On the other hand, mimicking [9],

a ring R is said to be invo-clean with weak involution if, for each r ∈ R, there are v ∈ R with

v2 = ±1 and e ∈ Id(R) such that r = v + e.
Likewise, in [11] we have studied rings which are closely related to the defined above in [9]

so-called invo-clean rings with weak involution, but the latter class is not well-explored there, so

that the results obtained herein unambiguously contribute something to the subject.

The goal of the present paper is to unify these two concepts into a single notion as demon-

strated below. Precisely, the basic concept in this section is the following one:

Definition 1. We shall say that a ring R is weakly invo-clean with weak involution if, for every

r ∈ R, there exist v ∈ R with v2 = ±1 and e ∈ Id(R) such that r = v + e or r = v − e.
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By a direct verification, pretty obvious examples of such rings are the fields Z2, Z3 and Z5 as

well as the indecomposable ring Z4.

Surprisingly, in contrast to [9], some more non-trivial constructions satisfying Definition 1 are

the following:

• Z3 × Z5

Indeed, all elements of these two fields are the idempotents {0, 1} as well as the involutions 2
in Z3 and 4 in Z5 as well as the weak involutions 2 and 3 in Z5. Thus, if w2 = −1 in Z5, then

one sees that (w + 1)2 = ±1 and (w − 1)2 = ±1. This allows us to assert that any element from

Z3 × Z5 can be presented as either (u, v) or (u, v) ± (1, 1) or (u, v) ± (1, 0) or (u, v) ± (0, 1),
where u, v are simultaneously either involutions or weak involutions.

• Z5 × Z5

Indeed, all elements of the field Z5 are idempotents and weak involutions, so that the same

method described in the previous point is successfully applied.

• Another valuable example of such a ring is from the theory of finite fields (compare

also with [13]), especially pertaining to the finite field of characteristic 3 with 9 elements: For

its construction, consider λ a root of the polynomial x2 + x + 2, so that λ2 + λ + 2 = 0 or,

equivalently, λ2 = 2λ + 1 as 3 = 0. Now the powers of λ give us that λ3 = 2λ + 2, λ4 = 2,
λ5 = 2λ, λ6 = λ+2, λ7 = λ+1 and λ8 = 1. So λ is a primitive element and we have represented

the elements of F9 as the 8 powers of λ that can be written as linear combinations of the basis

{1, λ} over F3 together with 0. In other words, F9 = {0, 1, 2, λ, 2λ+ 1, 2λ+ 2, 2λ, λ+ 2, λ+ 1}.
Moreover, x2 + 1, x2 + x + 2 and x2 + 2x + 2 are the only irreducible monic quadratic (i. e., of

degree 2) polynomials in F3[x], i.e., over F3. In particular, all elements of the field F9 satisfy one

of the equations x3 = x and (x3 − x)2 = −1.

We claim now that F9 is a weakly invo-clean ring with weak involution. In fact, we first

observe that λ2 6= ±1, (λ + 1)2 6= ±1, (λ − 1)2 6= 1, but (λ − 1)2 = −1. Therefore, one

can represent all elements as follows: λ = (λ − 1) + 1, λ + 1 = (λ − 1) − 1, λ + 2 = λ − 1,
2λ = 2(λ−1)−1, 2λ+1 = 2(λ−1)−1, 2λ+2 = 2(λ−1)+1, where [2(λ−1)]2 = (λ−1)2 = −1
as 3 = 0.

In particular, the ring Z3[i] = {a+ b i | a, b ∈ Z3} = {0, 1, 2, i, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i |
i2 = −1} of Gaussian integers modulo 3 is a field of characteristic 3 containing exactly 9 ele-

ments, that is, it is a field of the type F9.

Other non-trivial examples will be given later on, too. Reciprocally, two quick examples of

finite rings which are not weakly invo-clean with weak involution are the rings Z9 and Z17 which

verification we leave to the interested reader for a direct inspection.

The next two preliminary technicalities are pivotal for our further applications.

Lemma 1. Let R be a ring with q, v, e ∈ R such that q2 = 0, v2 = 1, e2 = e and q = v + e, or

such that q2 = 0, v2 = −1, e2 = e and q = v − e. Then e = 1.

P r o o f. By squaring the given equality q = v + e, one obtains that 1 + e + ve + ev = 0.
Multiplying by e on the left, we detect that 2e + eve + ev = 0, and by e on the right that

2e+ ve+ eve = 0. Comparing both sides, one infers that ve = ev. Consequently, 1 + e = −2ve
and again squaring, we inspect that 1 + 3e = 4e, i.e., e = 1, as expected.

Now, squaring the equality q = v − e, one derives that −1 + e − ve − ev = 0. Multiplying

subsequently on the left and on the right, we get −eve − ev = 0 and −ve − eve = 0 ensuring

ev = ve. Thus 1 − e = −2ev. Squaring this, we find that 1 − e = −4e, i.e., 3e = −1. Again

squaring, it follows that −3 = 9e = 1, that is, 4 = 0. This, finally, yields that 1 − e = 0, i. e.,

e = 1, as promised. �

The essence of our technical preliminaries is the following one.
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Proposition 1. Suppose that R is a ring of characteristic 5. Then the following three conditions

are equivalent:

(i) x3 = x or x4 = 1, ∀x ∈ R;

(ii) x3 = x or x3 = −x, ∀x ∈ R;

(iii) x3 = −x or x4 = 1, ∀x ∈ R;

(iv) R is isomorphic to the field Z5.

P r o o f. (iii) ⇐⇒ (i) ⇒ (ii). These relations follow pretty easy by using the argumentation

as presented: in fact, for an arbitrary but fixed y ∈ R satisfying y4 = 1 but y3 6= y, considering

the element y2 − 1 ∈ R, it must be that (y2 − 1)4 = 1 or (y2 − 1)3 = y2 − 1. In the first case, we

receive y2 = −1 and thus equivalently y3 = −y, as required, while in the second one, we arrive

at y2 = 1 and so in an equivalent form y3 = y which is against our initial assumption.

(ii) ⇐⇒ (iv). Let P be the subring of R generated by 1, and thus note that P ∼= Z5. We

claim that P = R, so we assume in a way of contradiction that there exists b ∈ R \ P . With

no loss of generality, we shall also assume that b3 = b since b3 = −b obviously implies that

(2b)3 = 2b as 5 = 0 and b 6∈ P ⇐⇒ 2b 6∈ P .

Now let (1 + b)3 = −(1 + b). Hence b = b3 together with 5 = 0 gives b2 = 1. This allows

us to conclude that (1 + 2b)3 6= ±(1 + 2b), however. In fact, if (1 + 2b)3 = 1 + 2b, then one

deduces that 2b = 3 ∈ P which is manifestly untrue. If now (1+ 2b)3 = −1− 2b, then one infers

that 2b = 2 ∈ P which is obviously false. That is why, only (1 + b)3 = 1 + b holds. This, in

turn, guarantees that b2 = −b. Moreover, b3 = b is equivalent to (−b)3 = −b as well as b3 = −b
to (−b)3 = −(−b) and thus, by what we have proved so far applied to −b 6∈ P , it follows that

−b = b2 = (−b)2 = −(−b) = b. Consequently, 2b = 0 = 6b = b ∈ P because 5 = 0, which is

the wanted contradiction. We thus conclude that P = R, as expected.

Conversely, it is trivial that the elements of Z5 are solutions of one of the equations x3 = x
or x3 = −x.

(iv) ⇒ (i). It is self-evident that all elements of Z5 satisfy one of the equations x3 = x or

x4 = 1. �

Imitating [10], let us recall that a ring is said to be weakly nil-clean, provided that each its

element is the sum or the difference of a nilpotent and an idempotent.

We are now in a position to proceed by proving the main achievement of this section, stating

the following theorem.

Theorem 1. A non-zero ring R is weakly invo-clean with weak involution if and only if R is

decomposable in the form R1 × R2 × R3, where each direct factor Ri (i = 1, 2, 3) is either {0},
but not all simultaneously, or satisfies the following conditions:

(1) R1 is a weakly invo-clean ring with weak involution which is also weakly nil-clean whose

nilpotents satisfy (one of) the equations x2 − 2x = 0 or x2 − 2x + 2 = 0 or x2 + 2x = 0
or x2 + 2x+ 2 = 0 and, in particular, x2 = 0 provided 2 = 0, x4 = 0 provided 4 = 0, and

x8 = 0 provided 8 = 0;

(2) R2 is a ring which is a subdirect product of a family of copies of the fields Z3 and F9;

(3) R3 is a ring which is a subdirect product of a family of copies of the field Z5.

P r o o f. (⇒). Write 3 = v + e or 3 = v − e for some e ∈ R with e2 = e and v ∈ R with

v2 = 1 or v2 = −1.
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Then, writing 3 − v = e, we square this equality and obtain that either 7 = 5v or 5 = 5v,

provided v2 = 1 or v2 = −1, respectively. Again by next squaring these two equalities, we detect

that 24 = 23 · 3 = 0 or that 50 = 2 · 52 = 0. So, one writes in both situations that 23 · 3 · 52 = 0.
Assume now we have written that v − 3 = e. As above, by subsequent double squaring, we

inspect that either 120 = 23 · 3 · 5 = 0 or 170 = 2 · 5 · 17 = 0. So, one writes in both situations

that 23 · 3 · 5 · 17 = 0.
Furthermore, combining all four different cases, one establishes that 23 · 3 · 52 · 17 = 0.

Therefore, the Chinese Remainder Theorem works to conclude that R ∼= R1 ×R2 ×R3 ×R4 for

some four rings R1, R2, R3, R4 which could be either zero rings (not, however, simultaneously

as R 6= {0}) or are weakly invo-clean rings with weak involution such that 8 = 0 in R1, 3 = 0
in R2, 5 = 0 in R3 and 17 = 0 in R4, respectively, claiming also that R4 = {0} must hold.

We will now classify these four rings separately and in more details:

About R1: Since 2 ∈ Nil(R1), one easily obtains that v + 1 and v − 1 are always nilpotents,

provided v2 = 1 or v2 = −1. In fact, concerning v + 1, in the first situation it must be

that (v + 1)2 = 2(v + 1), while, in the second situation, (v + 1)2 = 2v. Dealing now with

v − 1, we calculate that (v − 1)2 = 2(1 − v) when v2 = 1, and that (v − 1)2 = −2v when

v2 = −1. Furthermore, one simply writes for any r ∈ R1 that r = v + e = (v + 1) − (1 − e) ∈
∈ Nil(R1)− Id(R1) and that r = v − e = (v − 1) + (1− e) ∈ Nil(R1) + Id(R1), where e ∈ R1

with e2 = e, as required.

Moreover, for an arbitrary q ∈ Nil(R1), we write in the notations above that q = v + e or

q = v − e with v2 = ±1. Thus we may distinguish four cases like these:

• q = v+e with v2 = 1. Claim that e = 1. In fact, one deduces after squaring the equivalent

equality −v = −q + e and multiplying subsequently the result on the left and on the right by e
that e commutes with the nilpotent q(q−1) = q2−q; thus this nilpotent is commuting also with v.

Furthermore, setting f := 1 − e, one verifies that f = fv2 = fqv = fq(q − 1)(q − 1)−1v =
= f(q − 1)−1q(q − 1)v = f(q − 1)−1vq(q − 1) ∈ Nil(R1) ∩ Id(R1) = {0} whence f = 0 giving

us that e = 1 and hence that q = v+1. After squaring that, it follows that q2−2q = 0, as needed.

This guarantees also that q2 = 0 when 2 = 0, that q4 = 0 when 4 = 0 and that q8 = 0 when

8 = 0.
• q = v + e with v2 = −1. Assert that e = 1. Indeed, we may process in the same manner

as above to find that e commutes with q2 − q, and so imitating the same idea −f = fv2 will be

a nilpotent ensuring its immediate zeroing. Thus, as f = 0, we obtain at once that e = 1 and that

q = v + 1. By squaring, one sees that q2 − 2q + 2 = 0, as needed. A plain check shows that the

other three equalities about q remain valid too.

• q = v − e with v2 = 1. Thus −q = (−v) + e and as −q is still nilpotent and −v is still

involution, arguing as in the first bullet point, we deduce that e = 1. Hence v = q + 1 and, by

squaring, one obtains that q2 + 2q = 0, as required. A straightforward check shows that the other

three equalities about q remain also fulfilled.

• q = v − e with v2 = −1. As above, −q = (−v) + e where −q is still nilpotent and −v
is still weak involution, so we may argue as in the second bullet point to get that e = 1. Hence

v = q + 1 and, by squaring, one receives that q2 + 2q + 2 = 0, as stated. A routine check shows

that the other three equalities about q remain true as well.

About R2: Here 3 = 0. In the light of subsequent results in [6,12,14], it suffices to prove that

the equation x9 = x holds for all elements of R2. In fact, R2 will then be a subdirect product

of copies of the fields Fq, where q = 3k for some positive integer k such that (3k − 1)/8 and

hence k = 1 or k = 2 arises only, thus showing that the fields F3 = Z3 and F9 occur in the

subdirect decomposition. To that aim, we will foremost detect that R2 is reduced, i. e., there are

no non-trivial nilpotent elements. In fact, given q ∈ R2 with q2 = 0, we write that q = v+ e and,

respectively q = v−e, with e2 = e and v2 = 1 or v2 = −1. In the first possibility when q = v+e
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and v2 = 1, Lemma 1 implies that e = 1. So, squaring q = v+1, one detects that v = −1 because

3 = 0 is fulfilled here. Therefore, q = 0, as expected. We shall illustrate now that the second

possibility when q = v + e and v2 = −1 is nonsense. Indeed, squaring q = v + e, it follows

that 0 = −1 + e + ve + ev, that is, 1− e = ve + ev. Multiplying this on the left, we obtain that

0 = eve+ ev, whereas by a multiplication on the right, we obtain that 0 = ve+ eve. This means

that ev = ve and, consequently, that qv = vq. Thus q − v = e ∈ U(R2) ∩ Id(R2) = {1}. So,

q = v + 1 and 2v = −v = 0 which is absurd, as promised. If we write now q = v− e with either

v2 = 1 or v2 = −1, we can process like this: In the case where v2 = 1, after squaring q = v − e
we obtain that ve+ev = 1+e and thus, multiplying by e on the left and on the right, respectively,

one derives that eve + ev = 2e = eve + ve. Hence ev = ve and 1 + e = 2ev. Squaring this,

one sees that 1 + 3e = 4e, i. e., e = 1 and so 2v = 2, that is, v = 1 as 3 = 0. Finally, q = 0,
as promised. If, however, q = v − e with v2 = −1, we may write (−q) = (−v) + e, where still

(−q)2 = 0 and (−v)2 = −1. But this was already done above, so this substantiates, in all cases,

that R2 has to be abelian, being reduced.

Returning now to the initial case, for any r ∈ R2 we write that r = w + f for some weak

involution w and an idempotent f . We, therefore, find that r3 = (w+ f)3 = w3+ f as wf = fw.

But w2 = 1 yields that w3 = w, while w2 = −1 yields that w3 = −w. That is why, r3 = w+f = r
whence r9 = r, or r3 = −w + f = r + w since 3 = 0. Then we have in the second situation

that (r3 − r)3 = r − r3, yielding r9 − r3 = r − r3, i.e., r9 = r. Finally, in both cases, r9 = r is

fulfilled for all elements r of R2, as required.

About R3: Here 52 = 0. However, we claim that 5 = 0. In fact, since 52 = 0, it must

be that 5 ∈ J(R3). We claim that J(R3) = {0}, which will substantiate our desired equality.

Indeed, for any z ∈ J(R3), writing z = w + f or z = w − f for some weak involution w and

idempotent f , one infers that z − w = f ∈ Id(R3) ∩ U(R3) = {1} whence z = w + 1 or that

w−z = f ∈ Id(R3)∩U(R3) = {1} whence z = w−1. Besides, when z = w+1, we deduce that

(z−1)2 = 1 or (z−1)2 = −1, giving up that z(z−2) = 0 or that z(z−2) = −2. Since 2 ∈ U(R3),
it follows that z − 2 ∈ U(R3) and hence either z = 0, as required, or z = −2(z − 2)−1 ∈ U(R3)
which is false. When z = w − 1, we obtain by similarity that z(z + 2) = 0 or z(z + 2) = −2.
Hence, once again, z = 0 or z ∈ U(R3), and so we are set.

We also assert that R3 is reduced and therefore abelian. In fact, by a slight modification of

the technique demonstrated in the previous case of the ring R2, we will come to this conclusion

without any difficulty. Indeed, under the same notations as above, the case when q = v + e can

be processed step by step in the same way. In the other case where q = v− e, as observed above,

we have 2v = 2 which means that 6v = 6, i. e., v = 1, because 5 = 0, and thus we are set.

Next, with the latter in mind, we observe that the equality x5 = x holds for all elements in R3.

To that goal, with r = v + e and ve = ev at hand, we will obtain that r5 = (v + e)5 = v5 + e5 =
= v + e = r, because both v2 = 1 and v2 = −1 imply v4 = 1 and so v5 = v. Henceforth, the

corresponding result from [13] can be applied to get the asserted structural description.

About R4: We assert that R4 = {0} is mandatory to be fulfilled. In proving that, as we

showed in the previous cases, R4 is a subdirect product of copies of the field F17, but not so hard

verification shows that this field is definitely not weakly invo-clean with weak involution, so that

R4 must really be zero, as claimed.

(⇐). We are now planning to show that the direct product R1 × R2 × R3, with the

rings R1, R2, R3 described as in the text, is a weakly invo-clean ring with weak involution.

In fact, in order to illustrate that, one sees that the elements of the direct product R1 × R2 × R3

are the triples (x, y, z) with coordinates x ∈ R1, y ∈ R2, z ∈ R3. Since subdirect products of

the fields Z3, F9 and Z5 obviously retain the pursued “weakly invo-clean property with weak

involution” by using the traditional elementary coordinate-wise manipulations, and hence so does

the direct product R2 ×R3, what suffices to show is that the first direct component R1 will have
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the same behavior. To that goal, it is only necessary to take into account that, by what we have

established in point (1), R1 is a weakly nil-clean ring, which completes our argumentation after

all. �

The next commentaries could be helpful to simplify the used machinery in [9] and also to

have a scheme for further investigations.

Remark 1. We now will manage to show that some things of the proofs of the results presented

in [9] could be simplified substantially. Indeed, [9, Proposition 3.3], which is actually Proposi-

tion 1 here, can be confirmed as follows: All three conditions (i), (ii) and (iii) are clearly satisfied

in Z5, thus point (iv) implies all these three conditions. On the other hand, any of these three

conditions implies the identity x5 = x, thus R is a subdirect product of copies of Z5. If, however,

we assume for a moment that R is not isomorphic/equal to Z5, then it will have Z5 × Z5 as a

homomorphic image, which is nonsense because this direct product satisfies none of the presumed

conditions (i), (ii), (iii).

Likewise, an omnibus in the given there arguments is that every subdirect product of fields

obviously has no non-zero nilpotent elements. Also, to exclude the field F9 from the decompo-

sition in the main theorem, it is just enough to show that this ring is not invo-clean with weak

involution, but this is a pretty elementary exercise.

As a culmination of our explorations, we finish off our work with the following two challeng-

ing questions of some interest and importance, which immediately arise.

Problem 1. Describe the structure of those rings R whose elements can be written as r = v + e
such that v2 = ±1 and e2 = ±e.

Are these rings very close to the rings as defined in Definition 1 or they are totally different?

In any case, we may view them as a non-trivial generalization of the invo-clean rings with weak

involution presented in [9].

Problem 2. Classify the structure of feebly invo-clean rings with weak involution as defined in the

sense that, for every r ∈ R, there are two commuting idempotents e, f and a weak involution v
such that r = v + e− f .

Notice that this notion generalizes in a rather non-trivial way both concepts of weakly invo-

clean rings with weak involution (see Definition 1) and feebly invo-clean rings (see [4]). How-

ever, this will be the theme of some other research investigation, where a new approach might

work.
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Слабо инволютивно-чистые кольца со слабой инволюцией
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УДК 512.71

DOI: 10.35634/vm220102

Мы полностью описываем с точностью до изоморфизма структуру слабо инволютивно-чистых ко-

лец, обладающих слабой инволюцией. Полученные результаты расширяют две собственные работы,

а именно работы из Afrika Mat. (2017), касающиеся слабо инволютивно-чистых колец, а также

результаты из Far East J. Math. Sci. (2021), касающиеся инволютивно-чистых колец со слабой инво-

люцией.

Финансирование. Статья частично поддержана Болгарским национальным научным фондом, грант

KP-06 № 32/1 от 07 декабря 2019 года.

Поступила в редакцию 05.09.2021

Принята к публикации 24.01.2022

Данчев Петр Васильевич, д. мат. н., профессор, Институт математики и информатики Болгарской

Академия наук, 1113, Болгария, г. София, ул. акад. Г. Бончева, 8.

ORCID: https://orcid.org/0000-0002-2016-2336

E-mail: danchev@math.bas.bg

Цитирование: П. В. Данчев. Слабо инволютивно-чистые кольца со слабой инволюцией // Вест-

ник Удмуртского университета. Математика. Механика. Компьютерные науки. 2022. Т. 32. Вып. 1.

С. 18–25.

https://doi.org/10.35634/vm220102
https://orcid.org/0000-0002-2016-2336
mailto:danchev@math.bas.bg

	Weakly invo-clean rings with weak involution

