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predicates: we give a formal definition of the predicate unlocking operation, the rules for the construction
and calculation of “unlocking mappings” and their basic properties. As an illustration, we routinely construct
two unlocking mappings for the predicate “be non-anticipating mapping” and then on this base we provide
the expression for the greatest non-anticipating selection of a given multifunction.
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Introduction

We consider an approach to constructing a non-anticipating selection of a multivalued mapping;
such a problem arises in control theory under conditions of uncertainty. The approach is called
“unlocking of predicate” and consists in the reduction of finding the truth set of a predicate to
searching fixed points of some mappings. Unlocking of predicate gives an extra opportunity to
analyze the truth set and to build its elements with desired properties.

This concept is used in many fields of mathematics: in differential equations and differential inclu-
sions; in game theory, when studying the saddle points (see [1]) and the Nash equilibria (see [2,3]); in
dynamic games, when constructing the stable (weakly invariant) sets (see [4,5]) and non-anticipating
selections of multivalued mappings (see [6,7]). However, in all the above cases “unlocking mappings”
are presented as a ready-made product: a method for constructing an “unlocking mapping” has
remained beyond the consideration.

In this article, we outline how to build “unlocking mappings” for some general types of predicates:
we give a formal definition of the predicate unlocking operation, the rules for the construction and
calculation of “unlocking mappings” and their basic properties. As an illustration, we routinely
construct two unlocking mappings for the predicate “be non-anticipating mapping” and then on this
base we provide the expression for the greatest non-anticipating selection of a given multifunction.
This work continues [8] where the procedure for the predicate "be Nash equilibrium" is presented.

§ 1. Notation and definitions

1. Hereinafter, we use the set—theoretic symbols (quantifiers, propositional bundles, @ for the

empty set); © for the equality by definition; 4 for the equivalence by definition. We accept the
axiom of choice. A set consisting of sets is called a family. By P(T) (by P'(T')), we denote the
family of all (all nonempty) subsets of an arbitrary set T'; the family P(T') is also called Boolean of
the set 7. If A and B are non-empty sets, then B4 is the set of all functions from the set A to the
set B (see [9]). If f € B4 and C € P'(A), then (f|C) € B is the restriction of f to the set C:

(f1C)(z) o f(z) Yz € C. We denote the image of the set C' € P(A) under the function f by f(C):
f(O) &f {f(z) : x € C}. When f € P(B)4, f is called a multivalued function or multifunction
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(m/f) from A in B. The term “mapping” means a function or m/f. In case F € P'(B%), we denote

(F|1C) ¥ {(f1C): f e F}. If f € BA, we denote by f~! the m/f from B into A defined by the
rule

= dg{{aeA\b:ﬂa)}, beS(A), g

, b f(A)
We call the m/f f~1 inverse mapping. If f € P(B)4, i.e. fis a m/f, we define f~! by

10) dg{{aeArbeﬂa)}, beUs(d),  _p
a, b Uf(4)

For any f € XX we denote by Fix(f) the set of all fixed points of f: Fix(f) aef {r e X | f(z) =x}.

In the case when f is a m/f, the set Fix(f) is defined by: Fix(f) & {reX|xe f(x)}.

2. A predicate P on a non-empty set X is identified with the same name function from {0, 1}¥.
We say that € X satisfies the predicate P and write it down by P(z) iff P(z) = 1. The set
of all z € X satisfying the predicate P is called the set of truth (of the predicate P). Following
the definition of an inverse mapping, we denote this set by P~!(1). The set of all predicates on
X is denoted by PR(X). We denote by T (by §) the predicate on X defined by: T1(1) = X
(371(0) = X). Hence, for any P € PR(X), the equalities P = T&P = F V P, where “&” (“V")
denotes logical “and” (“or”), are valid.

We call unlocking of predicate P the operation of constructing a mapping Fp € P(X)¥ U XX
that satisfies the condition

Fix(Fp) = P~1(1). (1.1)

The mapping Fp with property (1.1), is called unlocking mapping (for the predicate P). Denote by
UM(P) the set of all unlocking m/f for the predicate P. Thus, UIM(P) € P'(P(X)X). The formal
exclusion of functions (the set XX) from UM(P) is dummy, because every function f satisfying
Fix(f) = P7!(1) is represented by the m/f Fy in UOM(P): Fy(z) et {f(z)} Vo € X. So, for
a function f we write down f € UI(P) keeping in mind the inclusion Fy € UM(P).

3. For any set X # @ and a partial ordering relation g€ P'(X x X), we denote by (X, =) the
corresponding partially ordered set (poset). A set C' C X is called a chain if it is totally ordered
by 5 (x < y)V(y < x) Va,y € C. In particular, @ is a chain. Following [10], we call a poset
(X,<) a chain—complete poset if there exists the greatest lower bound inf C' € X for any chain
C C X. In particular, every chain—complete poset (X, <) has the greatest element T € X (the
greatest lower bound of the empty chain), and, thus, it is not empty. For Y € P(X), we denote by
Ty and Ly the greatest and the least elements of the set Y, respectively, if they exist. A poset is
called a complete lattice iff any subset has the greatest and the least elements. So, any complete
lattice is a chain—complete poset. Let (X, <) be a non-empty poset and f € X*X. The function f is
called restrictive if f(x) < x for every x € X . The function f is called isotone if the implication
(x 2 y)= (f(x) <X f(y)) holds for all z,y € X.

4. Denote the class of ordinals by ORD. For a set X, we denote by |X| the least ordinal that
is equipotent to the set X (the cardinal of X). The relation of order (strict order) on the class of
cardinals is denoted by <= (<). For any set H, let |[H|* € ORD be the least ordinal among the
ordinals n with the property |H| < |n].

§ 2. Calculus of unlocking mappings

2.1. The order, restrictions and logical operations

1. Let X be a nonempty set. On the set P(X)¥X, we introduce the partial order <, as-

suming that (¢ < f) (<1:6>f(g(x) C f(x)Vz € X) Vf, g € P(X)X Then we have the equivalence
(g f)e (g7 =< f1). The poset (P(X)¥,<) is a complete lattice. It is also easy to check that,
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for any P € PR(X), the poset (UM(P), <) forms a complete sublattice (a subset being a complete
lattice) in (P(X)X, <) and the equalities are true:
X, P(x), {z}, P(a),

Tymp)(®) = {X \{z), —P(a). Lyompy (@) = {@, P().

In particular, for the predicates T, §, the relations Ty (7) = X, Ly (z) = {7}, Tum)(r) =
X\ {z}, and Lyon(g)(z) = @ are valid for all x € X. By definition, we have Tyonp) = Tis)l)t(Py
—1
Loom(p) = Luzm(P)'
Lemma 1. For all f € P(X)X, the relations
(f < Tamp)) = (Fix(f) ¢ P7H(1)), (Lym(p) < f) = (PH(1) C Fix(f))
are fulfilled. Consequently,
UM(P) = {f € P(X)* | Lyamepy < f < Tumee) > (f €UM(P)) & (f~! € UM(P)).

2. For any ¢ € P(X)X and Y € P/(X), we denote by [¢|Y] the following mapping
[@]Y](y) “yn #(y) Yy € Y. Recall that the restriction (P|Y) € PR(Y) et {0,1}Y of
P € PR(X) is defined by (P |Y)(y) ¥ P(y), vy € Y.

Lemma 2. For all P € PR(X), Y € P(X) the equalities UM((P|Y)) ={[¢|Y]: ¢ € UM(P)}

are valid.

3. The following lemma provides unlocking mappings for some expressions of propositional logic.

Lemma 3. If P,Q € PR(X), then the equalities are valid:
UM(~P) = {f € P(X)X | 3g € UM(P) : f(z) = X\ g(x) Y € X},
UM(PEQ) = {f € P(X)™ | Ig € UM(P)Tq € UM(Q) : f(x) = g(x) Na(x) Yo € X},
YUM(PV Q) = {f € P(X)¥ | 3g € UM(P)3q € UM(Q) : f(z) = g(x) Uq(x) Vz € X}.
Using the above relations, one can construct unlocking mappings for a variety of other proposi-
tional logic expressions.
Corollary 1. For all P € PR(X), f € UM(P), T € UM(X), and F € UM(F), the m/f fr,

fr € P(X)X defined by fr(zv) o T(x)N f(x), fr(x) o F(z)U f(z) Vo € X, are unlocking m/f for

the predicate P: fr, fr € UM(P). In addition, we have the relations:
Lum(p) () = Luom(z) (2) N f(z) = {z} N (=),
Tump)(#) = Tumez) (2) U f(z) = (X \ {z}) U f(=).
4. Lemma 4 is based on the corollary 1 and allows us to construct an unlocking function from

a given unlocking m/f in the case when X is an ordered set. Let (X, <) be a poset and the m/f
LEx € P(X)¥ is defined by

LEx(z) < {y € X |y < z}. (2.1)
Notice that LEx € 49(%).

Lemma 4. Let (X, <) be a nonempty poset, P € PR(X), and f € UM(P). Let G € P(X)X be

defined by

G(x) def LEx(x)N f(x), xr e X, (2.2)
def

Y = {y e X |G(y) # 2}, and the function g €YY be defined by

T aT
glz) & 96D Gle) zey.
yE G(x)7 _‘HTG(x)y

Then g is restrictive on (Y, <) and Fix(g) = P~1(1).
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2.2. Unlocking the conjunction of predicates defined on a product

The conjunction of a set of predicates is an important particular case. Using this peculiarity,
lemma 5 gives the construction of the corresponding unlocking m/f.

Let Z, (X,),ez be non-empty sets and

X “TIx.. (2.3)
LET

We call an element x € X a tuple from X (or simply a tuple if the set X is fixed) and denote the

(—th element of the tuple z by z,: x, 4 (z|{c}) € X,. Denote by (y,z_,) the tuple from X resulted

from the tuple x € X by substituting the element y € X, at the position of z,:

def Y, J=1
,T_,), = Vee X Vye X, VieT.
(y L)_] {xj’ ;e Z\ {L} ) L
Let a family of predicates P, € PR(X), 7 € J on the product X be given. Let the predicate

P € PR(X) have the form P(x) o (P(z) V3 € J)z € X. Let |J| <= |Z| and ¢ € 7 be the
corresponding injection of 7 into Z. Define the m/f Fp € P(X)¥X as follows:

Fp(x) 4 HBL(x) Vr e X, (2.4)
T

where m/f B,, B,, € P(X,)~ are defined by

B (x) {Bbql(g(x)((y,m)}, L€ q(),
' X, L& q(J), (2.5)
def

By) ={ye X, | B((y;x-))}, zeX, el ge].

Lemma 5. Fp € UM(P).

§ 3. The greatest non-anticipating selection

In [6,7], the representation of non-anticipating selections of a m/f as the set of fixpoins of a
function (noted by T') is provided. In other words, the unlocking of predicate “be non-anticipating
selection” is fulfilled. At the same time, the process of constructing the function I' remained out of
consideration. In this section, we carry out the process using constructions from [6,7] and relations
from the section 2.

3.1. Notation and definitions

Hereinafter, we fix D ©rxx , where I and X are non-empty sets. Select the set C € P'(XT)
whose elements are considered as “realizations of control actions”. So, the sets I and X are analogues
of time and state space respectively. Then we select and fix the sets Y and Q € #'(Y?). Elements

of {1 are treated as “realizations of uncertainty factors”. Let M o P(C)%* denote the set of all m/f
from €2 into C: a(w) C C for any w € Q, a € M.

The partial order C on M is defined by

def
(PC ) S (pw) CY(w) YweQ) Vo9 € M.

One can verify that the poset (M, C) is a complete lattice. For any ¢,v € M, we call m/f ¢
a selection of i iff ¢ C .

Let X € P(I) be a non-empty set and Qw|A) ¥ {v € Q| (| A) = (w|A)} Yw € Q, VA € X.
A m/f ¢ € M is called X -non-anticipating, iff

(W eQwlA) = ((¢(w)|A4) C (s(w)]|A)) VA€ X, Yw,w' € Q. (3.1)



Unlocking of predicate 287
MATHEMATICS 2017. Vol. 27. Issue?2

Remark 1. Due to the equivalence
(& € Qw]A) & (we QW |4) & (W] A) = (/|4)  VAeX, Vuu €,
implications (3.1) are equivalent to the relations
(@] A) = @' [4) = ((0w) | 4) = (6())| 4)) VA€ X, Voo €,
which are usually considered as the definition of non-anticipating property.

Fix the family X and am/f M € M. Our aim is to find the greatest in (M, C) X'-non-anticipating
selection of the m/f M. So, we should find a m/f ¢ € M, satisfying condition (3.1), the inequality
¢ C M, and such that the relation 8 C ¢ is valid for any 5 € M satisfying (3.1) and the inequality
BE M.

For the analysis of the problem above, we define the predicate P,, € PBR(M) “be X-non-
anticipating mapping” by

Po() & (W eQw|A)= ((p(w)]A) C (¢p(w')]|A)) VA€ X Vw,u' € Q) Vo e M, (3.2)

and introduce some new notation. For arbitrary Ae X, VC Q,weQ, HCC,heC,and p € M
we set

VW A C vel| @A) =wlA)}), HRHIAC{feH|(flA)= (|4}, (33
V(—w|A) E U(w]A)\ {w),
Bl AL () (60)]4), (3.4)
veQ(w|A)
Bl(-w|AE () (ew)]A). (3.5)
veQ(—w| A)

3.2. Unlocking the predicate “be X-non-anticipating mapping”

It follows directly from definition (3.2) that P,, is the conjunction of the family {F,, | w € Q},
where

Po(¢) & (W € QwlA) = ((¢(w)] A) C (s()|A)) VAEX) VweQ VoeM. (3.6)
Then we transform (3.6) using notation (3.4).

Lemma 6.
P,(9) < (dlw]A) = (opw)|4) VA€ X) Vw € Q, V¢ € M. (3.7)
So, the predicate Py, has the form (see (3.2))
Pra(9) & (Pu(d) Yw € Q) & ([gl(w]A) = (d(w)|A) VAeXVweQ)  VoeM.

According to scheme (2.3)—(2.4), we represent M as the product of 2 copies of the set P(C).
By the definitions the index set in the conjunction representing P,, coincides with the one in the
product representing M. Hence, the injection ¢ in (2.5) can be chosen as the identity mapping.
Then we have

€T weN

B, Y B, e P(PC)M, Fp,.(¢) E [] Bul@) € P(P(C)) € PM)M.

wel
We provide this list of “actors and performers” for the convenience of tracking scheme (2.3)—(2.4).
According to (2.5), (3.7) and notation (3.3)-(3.5), we construct the expression for B, €
€ P(P(C))M (recall that ¢ is the identity map):
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Lemma 7.

B.(¢)=7| ) U C(h|A) Yw € Q, Vo € M.
eXx heC
(h] A)E[@](—w | A)

By lemma, 5, the inclusion Fp,, € UM(P,,), where the mapping Fp,, € P(M)M (see (2.4)) has
the form

Fr. @) S T2 N U C(h|A) Vo e M, (3.8)
wenN Aex heC
(h] A)elgl(—w]| A)
is true.
Formally speaking the unlocking operation for the predicate P,, is performed. But we need some
steps to apply result (3.8) for solving the initial problem of constructing the greatest non-anticipating
selection of the given m/f M.

3.3. Design of the greatest X-non-anticipating selection

We turn to the construction of the greatest A'-non-anticipating selection of M. So, our aim is
to find T(p,, | Mr)-1(1), Where (Png | M) € PR(Mr) is the restriction of the predicate Ppq to

the non-empty set My C M, My def {p € M |  C M}. By the inclusion Fp,, € UM(P,,), we

should find the greatest element among fixpoints of (3.8) belonging the poset (M, C). One can
verify that the poset (Mg, C) is also a complete lattice. Hence, it is a non-empty poset.

Using lemma 1, we construct from Fp,, an unlocking m/f Fp,, |m,,) for the predicate
(Pra | Mm):

F(Poa Mp0) (@) = [Frus IMM](8) = M N Fp, (0) = [P ) U M(w)(h|A)
we | Aex heC
(h] A)e[¢l(—w ] A)

for all ¢ € M. Now we use lemma 4 for “narrowing” m/f Fp,, v € UM((Pra | Mag)). Note
that the lemma is valid in our case: (M, C) is a nonempty poset. The m/f LEn,, (see (2.1)) in
this case is defined by

LEnm,, (o) = [[ Plaw)), acMu. (3.9)

weN

Following (2.2) and (3.9), we construct m/f G € P(M)MM:

G(6) © Fpna v (@) NLEM,, (0) = [ 2| N U éwnla) o € M.
weN AeXx heC
(h1A)E[B(-w]| A)

Due to inclusion @ € P(X) for any set X, the inequalities G(¢) # &, ¢ € Mg hold. Consider the

function vy € (M )MM defined by the rule v(¢) def SUP(M u,,C) G(¢) Vi € M. For the function,

it follows that
w=1IN U  snrla voeMu (3.10)
weN AeX heC
(h] A)e[¢l(—w ] A)
Equalities (3.10) imply that + is isotone and the inclusions v(¢) € G(¢), V¢ € M4 are valid. Hence,
for all ¢ € My, the equality v(¢) = T (g is fulfilled. Since G and 7 satisfy lemma 4, we conclude
that: v is an isotone restrictive function and Fix(y) = P;.}(1).

na
The properties of the function ~ allows us to use the following theorem.
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Theorem 1 (see [11]). Let (X,<) be a chain-complete poset, f € XX be a restrictive function
on (X, <), and an ordinal o satisfy | X|* < . Then Fix(f) = {f%(x) : 2 € X}.

So, for any o € ORD such that [My|" < «, the equality

(Pra | MM)il(l) =" () : Y € M}

is true. Here we have the expression for the set of all non-anticipating selections of m/f M.

As v is isotone and My is a complete lattice, we can use the Tarski theorem [12, Theorem 1]:
the set Fix(y) = (Pna|Ma)~1(1) is a complete lattice in (Mg, C). Hence, there is the greatest
non-anticipating selection T (p, |m,,)-1(1) in the poset My Due to another result of Patrick and
Radhia Cousot (see [13, Theorem 3.2]), it can be described in terms of transfinite iterations of -y
starting at M:

T (Pra [Mp)-1(1) = TFix(y) = 7 (TMmp) =74 (M). (3.11)
Thus, we have the desired expression for the greatest non-anticipating selection of the m/f M.
3.4. Functions I' and ~v

Write down expression (3.10) in the coordinate form:

@) w) = U dw)(h|4) VYweQVoeM. (3.12)
Aex heC
(h| A)E[¢](w ] A)

Eliminating notation (3.3), (3.4) from (3.12), we get the equality v(¢)(w) = I'(¢)(w) V¢ € M
Vw € €, where T is given in [6, sec. 4]:

T(¢)(w) € {f € d(w) VA€ X W' € Qw|A)If € d(w'): (fIA) = (f'|A)} VweQVoeM.

Relation (3.11) generalizes the presentation [6, theorem 6.1], where o = w (the least infinite ordinal)
is used. In our case, the bigger ordinal compensates the absence of topological requirements on 2,
C, and M.

§ 4. Conclusion

The main application of the technique appears to be the existence theorems (for an equilibrium,
for an equation solution). When a predicate is defined on a poset, the greatest solution can be
explicitly written down as a limit of iterations.

It is interesting to notice that the process (of unlocking of predicate) can also be used in the
opposite direction: well known Fan’s result on saddle points [14] prompted the author to look for
one more fixed point theorem [15].
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B pabore pa3zpabaThIiBAETCST METOI, MMEHYEMBIH « PA3MBIKAHUE TTPEIUKATA S, CBOISIINI 33,129y TTONCKA MHOXKE-
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